Daichi Horita, K. Aizawa, Ryohei Suzuki, Taizan Yonetsuji, Huachun Zhu
{"title":"快速非线性图像解混","authors":"Daichi Horita, K. Aizawa, Ryohei Suzuki, Taizan Yonetsuji, Huachun Zhu","doi":"10.1109/WACV51458.2022.00325","DOIUrl":null,"url":null,"abstract":"Nonlinear color blending, which is advanced blending indicated by blend modes such as \"overlay\" and \"multiply,\" is extensively employed by digital creators to produce attractive visual effects. To enjoy such flexible editing modalities on existing bitmap images like photographs, however, creators need a fast nonlinear blending algorithm that decomposes an image into a set of semi-transparent layers. To address this issue, we propose a neural-network-based method for nonlinear decomposition of an input image into linear and nonlinear alpha layers that can be separately modified for editing purposes, based on the specified color palettes and blend modes. Experiments show that our proposed method achieves an inference speed 370 times faster than the state-of-the-art method of nonlinear image unblending, which uses computationally intensive iterative optimization. Furthermore, our reconstruction quality is higher or comparable than other methods, including linear blending models. In addition, we provide examples that apply our method to image editing with nonlinear blend modes.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast Nonlinear Image Unblending\",\"authors\":\"Daichi Horita, K. Aizawa, Ryohei Suzuki, Taizan Yonetsuji, Huachun Zhu\",\"doi\":\"10.1109/WACV51458.2022.00325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear color blending, which is advanced blending indicated by blend modes such as \\\"overlay\\\" and \\\"multiply,\\\" is extensively employed by digital creators to produce attractive visual effects. To enjoy such flexible editing modalities on existing bitmap images like photographs, however, creators need a fast nonlinear blending algorithm that decomposes an image into a set of semi-transparent layers. To address this issue, we propose a neural-network-based method for nonlinear decomposition of an input image into linear and nonlinear alpha layers that can be separately modified for editing purposes, based on the specified color palettes and blend modes. Experiments show that our proposed method achieves an inference speed 370 times faster than the state-of-the-art method of nonlinear image unblending, which uses computationally intensive iterative optimization. Furthermore, our reconstruction quality is higher or comparable than other methods, including linear blending models. In addition, we provide examples that apply our method to image editing with nonlinear blend modes.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear color blending, which is advanced blending indicated by blend modes such as "overlay" and "multiply," is extensively employed by digital creators to produce attractive visual effects. To enjoy such flexible editing modalities on existing bitmap images like photographs, however, creators need a fast nonlinear blending algorithm that decomposes an image into a set of semi-transparent layers. To address this issue, we propose a neural-network-based method for nonlinear decomposition of an input image into linear and nonlinear alpha layers that can be separately modified for editing purposes, based on the specified color palettes and blend modes. Experiments show that our proposed method achieves an inference speed 370 times faster than the state-of-the-art method of nonlinear image unblending, which uses computationally intensive iterative optimization. Furthermore, our reconstruction quality is higher or comparable than other methods, including linear blending models. In addition, we provide examples that apply our method to image editing with nonlinear blend modes.