高效鲁棒生物信号处理的神经启发超维分类

Yang Ni, N. Lesica, Fan-Gang Zeng, M. Imani
{"title":"高效鲁棒生物信号处理的神经启发超维分类","authors":"Yang Ni, N. Lesica, Fan-Gang Zeng, M. Imani","doi":"10.1145/3508352.3549477","DOIUrl":null,"url":null,"abstract":"The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process by existing machine learning algorithms. Hyper-Dimensional Computing (HDC) is introduced as a brain-inspired paradigm for lightweight time series classification. However, there are the following drawbacks with existing HDC algorithms: (1) low classification accuracy that comes from linear hyperdimensional representation, (2) lack of real-time learning support due to costly and non-hardware friendly operations, and (3) unable to build up a strong model from partially labeled data.In this paper, we propose TempHD, a novel hyperdimensional computing method for efficient and accurate biosignal classification. We first develop a novel non-linear hyperdimensional encoding that maps data points into high-dimensional space. Unlike existing HDC solutions that use costly mathematics for encoding, TempHD preserves spatial-temporal information of data in original space before mapping data into high-dimensional space. To obtain the most informative representation, our encoding method considers the non-linear interactions between both spatial sensors and temporally sampled data. Our evaluation shows that TempHD provides higher classification accuracy, significantly higher computation efficiency, and, more importantly, the capability to learn from partially labeled data. We evaluate TempHD effectiveness on noisy EEG data used for a brain-machine interface. Our results show that TempHD achieves, on average, 2.3% higher classification accuracy as well as 7.7× and 21.8× speedup for training and testing time compared to state-of-the-art HDC algorithms, respectively.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Neurally-Inspired Hyperdimensional Classification for Efficient and Robust Biosignal Processing\",\"authors\":\"Yang Ni, N. Lesica, Fan-Gang Zeng, M. Imani\",\"doi\":\"10.1145/3508352.3549477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process by existing machine learning algorithms. Hyper-Dimensional Computing (HDC) is introduced as a brain-inspired paradigm for lightweight time series classification. However, there are the following drawbacks with existing HDC algorithms: (1) low classification accuracy that comes from linear hyperdimensional representation, (2) lack of real-time learning support due to costly and non-hardware friendly operations, and (3) unable to build up a strong model from partially labeled data.In this paper, we propose TempHD, a novel hyperdimensional computing method for efficient and accurate biosignal classification. We first develop a novel non-linear hyperdimensional encoding that maps data points into high-dimensional space. Unlike existing HDC solutions that use costly mathematics for encoding, TempHD preserves spatial-temporal information of data in original space before mapping data into high-dimensional space. To obtain the most informative representation, our encoding method considers the non-linear interactions between both spatial sensors and temporally sampled data. Our evaluation shows that TempHD provides higher classification accuracy, significantly higher computation efficiency, and, more importantly, the capability to learn from partially labeled data. We evaluate TempHD effectiveness on noisy EEG data used for a brain-machine interface. Our results show that TempHD achieves, on average, 2.3% higher classification accuracy as well as 7.7× and 21.8× speedup for training and testing time compared to state-of-the-art HDC algorithms, respectively.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

生物信号由几个收集时间序列信息的传感器组成。由于时间序列包含时间依赖性,现有的机器学习算法很难处理它们。超维计算(HDC)是一种受大脑启发的轻量级时间序列分类范式。然而,现有的HDC算法存在以下缺点:(1)分类精度低,主要来自线性超维表示;(2)由于操作成本高且对硬件不友好,缺乏实时学习支持;(3)无法从部分标记的数据中建立强模型。在本文中,我们提出了一种新的超维计算方法TempHD,用于高效准确的生物信号分类。我们首先开发了一种新的非线性超维编码,将数据点映射到高维空间。与现有的HDC解决方案使用昂贵的数学编码不同,TempHD在将数据映射到高维空间之前保留了原始空间中数据的时空信息。为了获得最丰富的信息表示,我们的编码方法考虑了空间传感器和时间采样数据之间的非线性相互作用。我们的评估表明,TempHD提供了更高的分类精度,显著提高了计算效率,更重要的是,具有从部分标记数据中学习的能力。我们评估了TempHD对脑机接口中带有噪声的脑电图数据的有效性。我们的研究结果表明,与最先进的HDC算法相比,TempHD的分类准确率平均提高了2.3%,训练和测试时间分别提高了7.7倍和21.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neurally-Inspired Hyperdimensional Classification for Efficient and Robust Biosignal Processing
The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process by existing machine learning algorithms. Hyper-Dimensional Computing (HDC) is introduced as a brain-inspired paradigm for lightweight time series classification. However, there are the following drawbacks with existing HDC algorithms: (1) low classification accuracy that comes from linear hyperdimensional representation, (2) lack of real-time learning support due to costly and non-hardware friendly operations, and (3) unable to build up a strong model from partially labeled data.In this paper, we propose TempHD, a novel hyperdimensional computing method for efficient and accurate biosignal classification. We first develop a novel non-linear hyperdimensional encoding that maps data points into high-dimensional space. Unlike existing HDC solutions that use costly mathematics for encoding, TempHD preserves spatial-temporal information of data in original space before mapping data into high-dimensional space. To obtain the most informative representation, our encoding method considers the non-linear interactions between both spatial sensors and temporally sampled data. Our evaluation shows that TempHD provides higher classification accuracy, significantly higher computation efficiency, and, more importantly, the capability to learn from partially labeled data. We evaluate TempHD effectiveness on noisy EEG data used for a brain-machine interface. Our results show that TempHD achieves, on average, 2.3% higher classification accuracy as well as 7.7× and 21.8× speedup for training and testing time compared to state-of-the-art HDC algorithms, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1