基于快速RCNN的目标检测研究

S. Bhatlawande, S. Shilaskar, Mohit Agrawal, Varad Ashtekar, Mahesh Badade, Shwetambari Belote, Jyoti Madake
{"title":"基于快速RCNN的目标检测研究","authors":"S. Bhatlawande, S. Shilaskar, Mohit Agrawal, Varad Ashtekar, Mahesh Badade, Shwetambari Belote, Jyoti Madake","doi":"10.1109/CONIT55038.2022.9847725","DOIUrl":null,"url":null,"abstract":"Numerous studies in the field of object detection have been conducted over the past few decades. Several effective methods have been developed. Among various object detection algorithms, Faster RCNN offers excellent results in both detection speed and accuracy. It is a combination of Fast RCNN and RPN layers. This paper conducts a comparative study of object detection using Faster RCNN. The study shows that use of smaller convolutional network called Region Proposal Network improves performance of the system. It shows that object detection using Faster RCNN can give high accuracy and faster performance as compared to other methods and algorithms. It takes only 0.2 seconds to predict a single image. Also, it gives 70% Mean Accuracy Precision (mAP) on the PASCAL VOC 2007 and PASCAL VOC 2012 datasets.","PeriodicalId":270445,"journal":{"name":"2022 2nd International Conference on Intelligent Technologies (CONIT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Object Detection with Faster RCNN\",\"authors\":\"S. Bhatlawande, S. Shilaskar, Mohit Agrawal, Varad Ashtekar, Mahesh Badade, Shwetambari Belote, Jyoti Madake\",\"doi\":\"10.1109/CONIT55038.2022.9847725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous studies in the field of object detection have been conducted over the past few decades. Several effective methods have been developed. Among various object detection algorithms, Faster RCNN offers excellent results in both detection speed and accuracy. It is a combination of Fast RCNN and RPN layers. This paper conducts a comparative study of object detection using Faster RCNN. The study shows that use of smaller convolutional network called Region Proposal Network improves performance of the system. It shows that object detection using Faster RCNN can give high accuracy and faster performance as compared to other methods and algorithms. It takes only 0.2 seconds to predict a single image. Also, it gives 70% Mean Accuracy Precision (mAP) on the PASCAL VOC 2007 and PASCAL VOC 2012 datasets.\",\"PeriodicalId\":270445,\"journal\":{\"name\":\"2022 2nd International Conference on Intelligent Technologies (CONIT)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Intelligent Technologies (CONIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONIT55038.2022.9847725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Intelligent Technologies (CONIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIT55038.2022.9847725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,在目标检测领域进行了大量的研究。已经开发了几种有效的方法。在各种目标检测算法中,Faster RCNN在检测速度和精度方面都取得了优异的成绩。它是快速RCNN和RPN层的结合。本文对Faster RCNN的目标检测进行了对比研究。研究表明,使用较小的卷积网络(称为区域提议网络)可以提高系统的性能。结果表明,与其他方法和算法相比,使用更快的RCNN进行目标检测具有更高的精度和更快的性能。预测一张图像只需要0.2秒。此外,它在PASCAL VOC 2007和PASCAL VOC 2012数据集上给出了70%的平均精度精度(mAP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of Object Detection with Faster RCNN
Numerous studies in the field of object detection have been conducted over the past few decades. Several effective methods have been developed. Among various object detection algorithms, Faster RCNN offers excellent results in both detection speed and accuracy. It is a combination of Fast RCNN and RPN layers. This paper conducts a comparative study of object detection using Faster RCNN. The study shows that use of smaller convolutional network called Region Proposal Network improves performance of the system. It shows that object detection using Faster RCNN can give high accuracy and faster performance as compared to other methods and algorithms. It takes only 0.2 seconds to predict a single image. Also, it gives 70% Mean Accuracy Precision (mAP) on the PASCAL VOC 2007 and PASCAL VOC 2012 datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Software Bug Prediction and Tracing Models from a Statistical Perspective Using Machine Learning Design & Simulation of a High Frequency Rectifier Using Operational Amplifier Brain Tumor Detection Application Based On Convolutional Neural Network Classification of Brain Tumor Into Four Categories Using Convolution Neural Network Comparison of Variants of Yen's Algorithm for Finding K-Simple Shortest Paths
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1