基于张量理论的多维谱数据去噪

Chengkai Zhai, Wensheng Zhang, Jian Sun, Weihong Zhu, Piming Ma, Zhiquan Bai, Lei Zhang
{"title":"基于张量理论的多维谱数据去噪","authors":"Chengkai Zhai, Wensheng Zhang, Jian Sun, Weihong Zhu, Piming Ma, Zhiquan Bai, Lei Zhang","doi":"10.1109/ICECE54449.2021.9674642","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel multi-dimensional spectrum data denoising scheme from the perspective of tensor theory. The spectrum data is organized into spectrum tensor comprehensively from multiple dimensions. The optimal low rank approximation of the noisy spectrum tensor can be calculated by TUCKALS3 algorithm to reduce noise. Estimating the n-rank of tensor more accurately is necessary to improve the denoising performance of the TUCKALS3 algorithm. Therefore, we further improve the existing minimum description length (MDL) algorithm. Experimental results show that the signal-to-noise ratio (SNR) of the spectrum tensor can be increased by 15dB averagely by applying the enhanced algorithm, even at a higher noise level. The enhanced TUCKALS3 algorithm can effectively denoise multi-dimensional spectrum data and improve the corresponding system performance.","PeriodicalId":166178,"journal":{"name":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","volume":"40 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Dimensional Spectrum Data Denoising Based on Tensor Theory\",\"authors\":\"Chengkai Zhai, Wensheng Zhang, Jian Sun, Weihong Zhu, Piming Ma, Zhiquan Bai, Lei Zhang\",\"doi\":\"10.1109/ICECE54449.2021.9674642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel multi-dimensional spectrum data denoising scheme from the perspective of tensor theory. The spectrum data is organized into spectrum tensor comprehensively from multiple dimensions. The optimal low rank approximation of the noisy spectrum tensor can be calculated by TUCKALS3 algorithm to reduce noise. Estimating the n-rank of tensor more accurately is necessary to improve the denoising performance of the TUCKALS3 algorithm. Therefore, we further improve the existing minimum description length (MDL) algorithm. Experimental results show that the signal-to-noise ratio (SNR) of the spectrum tensor can be increased by 15dB averagely by applying the enhanced algorithm, even at a higher noise level. The enhanced TUCKALS3 algorithm can effectively denoise multi-dimensional spectrum data and improve the corresponding system performance.\",\"PeriodicalId\":166178,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)\",\"volume\":\"40 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE54449.2021.9674642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE54449.2021.9674642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从张量理论的角度提出了一种新的多维谱数据去噪方案。将光谱数据从多个维度全面组织成光谱张量。通过TUCKALS3算法计算噪声谱张量的最优低秩逼近,达到降噪目的。为了提高TUCKALS3算法的去噪性能,需要更准确地估计张量的n秩。因此,我们进一步改进了现有的最小描述长度(MDL)算法。实验结果表明,即使在较高的噪声水平下,应用增强算法也能使频谱张量的信噪比平均提高15dB。增强的TUCKALS3算法可以有效地对多维频谱数据进行降噪,提高相应的系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Dimensional Spectrum Data Denoising Based on Tensor Theory
In this paper, we propose a novel multi-dimensional spectrum data denoising scheme from the perspective of tensor theory. The spectrum data is organized into spectrum tensor comprehensively from multiple dimensions. The optimal low rank approximation of the noisy spectrum tensor can be calculated by TUCKALS3 algorithm to reduce noise. Estimating the n-rank of tensor more accurately is necessary to improve the denoising performance of the TUCKALS3 algorithm. Therefore, we further improve the existing minimum description length (MDL) algorithm. Experimental results show that the signal-to-noise ratio (SNR) of the spectrum tensor can be increased by 15dB averagely by applying the enhanced algorithm, even at a higher noise level. The enhanced TUCKALS3 algorithm can effectively denoise multi-dimensional spectrum data and improve the corresponding system performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Emergency Rescue Command Platform Based on Satellite Mobile Communication System Multi-Dimensional Spectrum Data Denoising Based on Tensor Theory Predicting COVID-19 Severe Patients and Evaluation Method of 3 Stages Severe Level by Machine Learning A Novel Stacking Framework Based On Hybrid of Gradient Boosting-Adaptive Boosting-Multilayer Perceptron for Crash Injury Severity Prediction and Analysis Key Techniques on Unified Identity Authentication in OpenMBEE Integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1