基于边缘和颜色特征的自动场景文本检测

Xiaodong Huang, Kehua Liu, Lishang Zhu
{"title":"基于边缘和颜色特征的自动场景文本检测","authors":"Xiaodong Huang, Kehua Liu, Lishang Zhu","doi":"10.1109/ICSAI.2012.6223415","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel approach to detecting scene text based on the edge and color features. Firstly, because the character edge feature is not sensitive to the luminance changes, we extract the edge features to locate the candidate text region coarsely. Secondly, according to the text row character will keep similar color, we use the K-means clustering to extract color feature and locate the candidate text regions accurately. Finally, we use a trained SVM classifier to distinguish the text region from non-text region in these candidate regions. Experimental results show that our algorithm performs well for detecting scene text with various color, font-size and text alignment.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Auto scene text detection based on edge and color features\",\"authors\":\"Xiaodong Huang, Kehua Liu, Lishang Zhu\",\"doi\":\"10.1109/ICSAI.2012.6223415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel approach to detecting scene text based on the edge and color features. Firstly, because the character edge feature is not sensitive to the luminance changes, we extract the edge features to locate the candidate text region coarsely. Secondly, according to the text row character will keep similar color, we use the K-means clustering to extract color feature and locate the candidate text regions accurately. Finally, we use a trained SVM classifier to distinguish the text region from non-text region in these candidate regions. Experimental results show that our algorithm performs well for detecting scene text with various color, font-size and text alignment.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于边缘和颜色特征的场景文本检测方法。首先,由于字符边缘特征对亮度变化不敏感,提取边缘特征进行粗定位;其次,根据文本行字符保持相似颜色的特点,采用k均值聚类方法提取颜色特征,准确定位候选文本区域;最后,我们使用训练好的SVM分类器在这些候选区域中区分文本区域和非文本区域。实验结果表明,该算法能够很好地检测不同颜色、字体大小和文本对齐方式的场景文本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Auto scene text detection based on edge and color features
In this paper we present a novel approach to detecting scene text based on the edge and color features. Firstly, because the character edge feature is not sensitive to the luminance changes, we extract the edge features to locate the candidate text region coarsely. Secondly, according to the text row character will keep similar color, we use the K-means clustering to extract color feature and locate the candidate text regions accurately. Finally, we use a trained SVM classifier to distinguish the text region from non-text region in these candidate regions. Experimental results show that our algorithm performs well for detecting scene text with various color, font-size and text alignment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About feedback vaccination rules for a true-mass action-type SEIR epidemic model Enhanced accuracy of position based on Multi-mode location system Formal verification of signature monitoring mechanisms using model checking How to cope with the evolution of classic software during the test generation based on CPN Soil moisture quantitative study of the Nanhui tidal flat in the Yangtze River Estuary by using ENVISAT ASAR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1