{"title":"使用激光二极管的光折变可重构互连4×4","authors":"A. Chiou, P. Yeh","doi":"10.1364/optcomp.1991.tud4","DOIUrl":null,"url":null,"abstract":"Reconfigurable optical interconnection capable of partial or full broadcasting plays a key role in optical computing and optical neural network. The interconnection can be implemented using optical matrix-vector multiplication [1]. The reconfigurability is achieved by changing the interconnection matrix written on a spatial light modulator (SLM). For a one-to-one permutation link of an array of N sources to an array of N detectors, such an approach suffers a 1/N intrinsic fanout loss [1,2].","PeriodicalId":302010,"journal":{"name":"Optical Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 4×4 Photorefractive Reconfigurable Interconnect Using Laser Diodes\",\"authors\":\"A. Chiou, P. Yeh\",\"doi\":\"10.1364/optcomp.1991.tud4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable optical interconnection capable of partial or full broadcasting plays a key role in optical computing and optical neural network. The interconnection can be implemented using optical matrix-vector multiplication [1]. The reconfigurability is achieved by changing the interconnection matrix written on a spatial light modulator (SLM). For a one-to-one permutation link of an array of N sources to an array of N detectors, such an approach suffers a 1/N intrinsic fanout loss [1,2].\",\"PeriodicalId\":302010,\"journal\":{\"name\":\"Optical Computing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optcomp.1991.tud4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcomp.1991.tud4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 4×4 Photorefractive Reconfigurable Interconnect Using Laser Diodes
Reconfigurable optical interconnection capable of partial or full broadcasting plays a key role in optical computing and optical neural network. The interconnection can be implemented using optical matrix-vector multiplication [1]. The reconfigurability is achieved by changing the interconnection matrix written on a spatial light modulator (SLM). For a one-to-one permutation link of an array of N sources to an array of N detectors, such an approach suffers a 1/N intrinsic fanout loss [1,2].