R. Wetzker, T. Alpcan, C. Bauckhage, Winfried Umbrath, S. Albayrak
{"title":"文档分类的无监督分层方法","authors":"R. Wetzker, T. Alpcan, C. Bauckhage, Winfried Umbrath, S. Albayrak","doi":"10.1109/WI.2007.21","DOIUrl":null,"url":null,"abstract":"We propose a hierarchical approach to document categorization that requires no pre-configuration and maps the semantic document space to a predefined taxonomy. The utilization of search engines to train a hierarchical classifier makes our approach more flexible than existing solutions which rely on (human) labeled data and are bound to a specific domain. We show that the structural information given by the taxonomy allows for a context aware construction of search queries and leads to higher tagging accuracy. We test our approach on different benchmark datasets and evaluate its performance on the single- and multi-tag assignment tasks. The experimental results show that our solution is as accurate as supervised classifiers for web page classification and still performs well when categorizing domain specific documents.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"An unsupervised hierarchical approach to document categorization\",\"authors\":\"R. Wetzker, T. Alpcan, C. Bauckhage, Winfried Umbrath, S. Albayrak\",\"doi\":\"10.1109/WI.2007.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a hierarchical approach to document categorization that requires no pre-configuration and maps the semantic document space to a predefined taxonomy. The utilization of search engines to train a hierarchical classifier makes our approach more flexible than existing solutions which rely on (human) labeled data and are bound to a specific domain. We show that the structural information given by the taxonomy allows for a context aware construction of search queries and leads to higher tagging accuracy. We test our approach on different benchmark datasets and evaluate its performance on the single- and multi-tag assignment tasks. The experimental results show that our solution is as accurate as supervised classifiers for web page classification and still performs well when categorizing domain specific documents.\",\"PeriodicalId\":192501,\"journal\":{\"name\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2007.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An unsupervised hierarchical approach to document categorization
We propose a hierarchical approach to document categorization that requires no pre-configuration and maps the semantic document space to a predefined taxonomy. The utilization of search engines to train a hierarchical classifier makes our approach more flexible than existing solutions which rely on (human) labeled data and are bound to a specific domain. We show that the structural information given by the taxonomy allows for a context aware construction of search queries and leads to higher tagging accuracy. We test our approach on different benchmark datasets and evaluate its performance on the single- and multi-tag assignment tasks. The experimental results show that our solution is as accurate as supervised classifiers for web page classification and still performs well when categorizing domain specific documents.