{"title":"基于机器学习的COVID-19重症患者预测及三级重症程度评估方法","authors":"Jiahao Qu, Brian Sumali, Y. Mitsukura","doi":"10.1109/ICECE54449.2021.9674303","DOIUrl":null,"url":null,"abstract":"Since the outbreak of COVID-19 in Wuhan, China in December 2019, a large number of patients have been seen worldwide, and the number of infections continues to show an increasing trend. The vast majority of COVID-19 patients will have fever, headache, and mild respiratory symptoms, but a small number of severely ill patients will experience respiratory distress and related complications, which seriously endanger their lives. The large number of patients also puts the healthcare system to the test. To maximize the protection of patients’ lives and the effective use of medical resources, this study collected blood data from 313 patients by machine learning, used 7 blood test items as the feature quantity, established an effective linear SVM prediction model for severe/non-severe disease (recall: 93.55%, specificity: 93.22%), and for 3 stages evaluation of the degree of severe level in severe patients was developed for patients with critical illness. The abnormal increase in Ferritin values was also found to be closely related to the development of severity.","PeriodicalId":166178,"journal":{"name":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting COVID-19 Severe Patients and Evaluation Method of 3 Stages Severe Level by Machine Learning\",\"authors\":\"Jiahao Qu, Brian Sumali, Y. Mitsukura\",\"doi\":\"10.1109/ICECE54449.2021.9674303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the outbreak of COVID-19 in Wuhan, China in December 2019, a large number of patients have been seen worldwide, and the number of infections continues to show an increasing trend. The vast majority of COVID-19 patients will have fever, headache, and mild respiratory symptoms, but a small number of severely ill patients will experience respiratory distress and related complications, which seriously endanger their lives. The large number of patients also puts the healthcare system to the test. To maximize the protection of patients’ lives and the effective use of medical resources, this study collected blood data from 313 patients by machine learning, used 7 blood test items as the feature quantity, established an effective linear SVM prediction model for severe/non-severe disease (recall: 93.55%, specificity: 93.22%), and for 3 stages evaluation of the degree of severe level in severe patients was developed for patients with critical illness. The abnormal increase in Ferritin values was also found to be closely related to the development of severity.\",\"PeriodicalId\":166178,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE54449.2021.9674303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE54449.2021.9674303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting COVID-19 Severe Patients and Evaluation Method of 3 Stages Severe Level by Machine Learning
Since the outbreak of COVID-19 in Wuhan, China in December 2019, a large number of patients have been seen worldwide, and the number of infections continues to show an increasing trend. The vast majority of COVID-19 patients will have fever, headache, and mild respiratory symptoms, but a small number of severely ill patients will experience respiratory distress and related complications, which seriously endanger their lives. The large number of patients also puts the healthcare system to the test. To maximize the protection of patients’ lives and the effective use of medical resources, this study collected blood data from 313 patients by machine learning, used 7 blood test items as the feature quantity, established an effective linear SVM prediction model for severe/non-severe disease (recall: 93.55%, specificity: 93.22%), and for 3 stages evaluation of the degree of severe level in severe patients was developed for patients with critical illness. The abnormal increase in Ferritin values was also found to be closely related to the development of severity.