{"title":"众包平台有质量保证的任务分配","authors":"Xiaoyan Yin, Yanjiao Chen, Baochun Li","doi":"10.1109/IWQoS.2017.7969165","DOIUrl":null,"url":null,"abstract":"Crowdsourcing leverages the collective intelligence of the massive crowd workers to accomplish tasks in a cost-effective way. On a crowdsourcing platform, it is challenging to assign tasks to workers in an appropriate way due to heterogeneity in both tasks and workers. In this paper, we explore the problem of assigning workers with various skill levels to tasks with different quality requirements and budget constraints. We first formulate the task assignment as a many-to-one matching problem, in which multiple workers are assigned to a task, and the task can be successfully completed only if a minimum quality requirement can be satisfied within its limited budget. Different from traditional task assignment mechanisms which focus on utility maximization for the crowdsourcing platform, our proposed matching framework takes into consideration the preferences of individual crowdsourcers and workers towards each other. We design a novel algorithm that can generate a stable outcome for the many-to-one matching problem with lower and upper bounds (i.e., quality requirement and budget constraint), as well as heterogeneous worker skill levels. Through extensive simulations, we show that the proposed algorithm can greatly improve the success ratio of task accomplishment and worker happiness, when compared with existing algorithms.","PeriodicalId":422861,"journal":{"name":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Task assignment with guaranteed quality for crowdsourcing platforms\",\"authors\":\"Xiaoyan Yin, Yanjiao Chen, Baochun Li\",\"doi\":\"10.1109/IWQoS.2017.7969165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowdsourcing leverages the collective intelligence of the massive crowd workers to accomplish tasks in a cost-effective way. On a crowdsourcing platform, it is challenging to assign tasks to workers in an appropriate way due to heterogeneity in both tasks and workers. In this paper, we explore the problem of assigning workers with various skill levels to tasks with different quality requirements and budget constraints. We first formulate the task assignment as a many-to-one matching problem, in which multiple workers are assigned to a task, and the task can be successfully completed only if a minimum quality requirement can be satisfied within its limited budget. Different from traditional task assignment mechanisms which focus on utility maximization for the crowdsourcing platform, our proposed matching framework takes into consideration the preferences of individual crowdsourcers and workers towards each other. We design a novel algorithm that can generate a stable outcome for the many-to-one matching problem with lower and upper bounds (i.e., quality requirement and budget constraint), as well as heterogeneous worker skill levels. Through extensive simulations, we show that the proposed algorithm can greatly improve the success ratio of task accomplishment and worker happiness, when compared with existing algorithms.\",\"PeriodicalId\":422861,\"journal\":{\"name\":\"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS.2017.7969165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2017.7969165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Task assignment with guaranteed quality for crowdsourcing platforms
Crowdsourcing leverages the collective intelligence of the massive crowd workers to accomplish tasks in a cost-effective way. On a crowdsourcing platform, it is challenging to assign tasks to workers in an appropriate way due to heterogeneity in both tasks and workers. In this paper, we explore the problem of assigning workers with various skill levels to tasks with different quality requirements and budget constraints. We first formulate the task assignment as a many-to-one matching problem, in which multiple workers are assigned to a task, and the task can be successfully completed only if a minimum quality requirement can be satisfied within its limited budget. Different from traditional task assignment mechanisms which focus on utility maximization for the crowdsourcing platform, our proposed matching framework takes into consideration the preferences of individual crowdsourcers and workers towards each other. We design a novel algorithm that can generate a stable outcome for the many-to-one matching problem with lower and upper bounds (i.e., quality requirement and budget constraint), as well as heterogeneous worker skill levels. Through extensive simulations, we show that the proposed algorithm can greatly improve the success ratio of task accomplishment and worker happiness, when compared with existing algorithms.