基于区间系数样条模糊模型的非线性区间回归分析

Lili Cai, Degang Wang, Wenyan Song, Hongxing Li
{"title":"基于区间系数样条模糊模型的非线性区间回归分析","authors":"Lili Cai, Degang Wang, Wenyan Song, Hongxing Li","doi":"10.1109/ICICIP.2016.7885903","DOIUrl":null,"url":null,"abstract":"Interval regression analysis is an effective method of handling uncertain and imprecise data. In this paper, a kind of spline fuzzy model is designed for modeling interval data. Spline function is chosen as the membership function, and the coefficients of this model are taken as interval-valued numbers. A target function based on approximation errors and specificity is proposed to improve the quality of estimated interval data. Accordingly, gradient descent algorithm is employed to tune these interval weights. Some numerical simulations are carried out to validate the effectiveness of the proposed spline interval regression model.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear interval regression analysis based on spline fuzzy model with interval coefficients\",\"authors\":\"Lili Cai, Degang Wang, Wenyan Song, Hongxing Li\",\"doi\":\"10.1109/ICICIP.2016.7885903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interval regression analysis is an effective method of handling uncertain and imprecise data. In this paper, a kind of spline fuzzy model is designed for modeling interval data. Spline function is chosen as the membership function, and the coefficients of this model are taken as interval-valued numbers. A target function based on approximation errors and specificity is proposed to improve the quality of estimated interval data. Accordingly, gradient descent algorithm is employed to tune these interval weights. Some numerical simulations are carried out to validate the effectiveness of the proposed spline interval regression model.\",\"PeriodicalId\":226381,\"journal\":{\"name\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2016.7885903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

区间回归分析是处理不确定和不精确数据的有效方法。本文设计了一种用于区间数据建模的样条模糊模型。选取样条函数作为隶属函数,模型系数取区间数。为了提高区间估计数据的质量,提出了一种基于近似误差和特异性的目标函数。因此,采用梯度下降算法来调整这些区间权重。通过数值模拟验证了样条区间回归模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear interval regression analysis based on spline fuzzy model with interval coefficients
Interval regression analysis is an effective method of handling uncertain and imprecise data. In this paper, a kind of spline fuzzy model is designed for modeling interval data. Spline function is chosen as the membership function, and the coefficients of this model are taken as interval-valued numbers. A target function based on approximation errors and specificity is proposed to improve the quality of estimated interval data. Accordingly, gradient descent algorithm is employed to tune these interval weights. Some numerical simulations are carried out to validate the effectiveness of the proposed spline interval regression model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New results on stability and stabilization analyses for T-S fuzzy systems with distributed time-delay under imperfect premise matching Nonlinear interval regression analysis based on spline fuzzy model with interval coefficients Detection of abnormal process behavior in copper solvent extraction by Hotelling T2 and squared prediction error control chart A using of just-in-time learning based data driven method in continuous stirred tank heater Study on a density peak based clustering algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1