短纤维增强金属基复合材料疲劳损伤演化研究

S. Canumalla, Robert N. Pangborn
{"title":"短纤维增强金属基复合材料疲劳损伤演化研究","authors":"S. Canumalla, Robert N. Pangborn","doi":"10.1115/imece1996-0498","DOIUrl":null,"url":null,"abstract":"\n The micromechanisms of fatigue failure of a short, alumina-silicate fiber reinforced cast aluminum alloy (A356) are investigated in this study. The nature of damage evolution is studied by three complementary perspectives — i) monitoring of the mechanical response, ii) microscopy on the gage length and fracture surface, and iii) probing of the microstructural changes in the bulk nondestructively using acoustic emission. The damage evolution in the composite is driven by strain or fatigue cycles imposed on the specimen and is manifested as three distinct mechanisms: a) cracking at hollow shot particles early in the life, b) microcracking in the form of fracture of fibers oriented in the direction of the loading and splitting or decohesion at fiber/matrix interface of transversely oriented fibers, and c) void formation at fiber ends and other stress concentrations. The interaction among the different modes, which defines the evolution of microstructural damage, is described. A flow chart for the progression of damage is presented and the most important steps in the damage evolution are identified. Suggestions are made for improving fatigue performance by tailoring the microstructure of the composite.","PeriodicalId":326220,"journal":{"name":"Aerospace and Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue Damage Evolution in a Short Fiber Reinforced Metal Matrix Composite\",\"authors\":\"S. Canumalla, Robert N. Pangborn\",\"doi\":\"10.1115/imece1996-0498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The micromechanisms of fatigue failure of a short, alumina-silicate fiber reinforced cast aluminum alloy (A356) are investigated in this study. The nature of damage evolution is studied by three complementary perspectives — i) monitoring of the mechanical response, ii) microscopy on the gage length and fracture surface, and iii) probing of the microstructural changes in the bulk nondestructively using acoustic emission. The damage evolution in the composite is driven by strain or fatigue cycles imposed on the specimen and is manifested as three distinct mechanisms: a) cracking at hollow shot particles early in the life, b) microcracking in the form of fracture of fibers oriented in the direction of the loading and splitting or decohesion at fiber/matrix interface of transversely oriented fibers, and c) void formation at fiber ends and other stress concentrations. The interaction among the different modes, which defines the evolution of microstructural damage, is described. A flow chart for the progression of damage is presented and the most important steps in the damage evolution are identified. Suggestions are made for improving fatigue performance by tailoring the microstructure of the composite.\",\"PeriodicalId\":326220,\"journal\":{\"name\":\"Aerospace and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1996-0498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1996-0498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种短型硅酸铝纤维增强铸造铝合金(A356)疲劳失效的微观机制。损伤演化的本质是通过三个互补的角度来研究的:1)机械响应的监测,2)测量长度和断口表面的显微观察,3)利用声发射无损探测体中的微观结构变化。复合材料的损伤演化是由施加在试样上的应变或疲劳循环驱动的,表现为三种不同的机制:a)在寿命早期的空心弹丸颗粒处开裂;b)在加载方向取向的纤维断裂和横向取向纤维/基体界面处的分裂或脱黏;c)纤维端部形成空洞和其他应力集中。描述了不同模态之间的相互作用,定义了微观结构损伤的演化过程。给出了损伤发展的流程图,并确定了损伤发展过程中最重要的步骤。提出了通过调整复合材料的微观组织来改善其疲劳性能的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatigue Damage Evolution in a Short Fiber Reinforced Metal Matrix Composite
The micromechanisms of fatigue failure of a short, alumina-silicate fiber reinforced cast aluminum alloy (A356) are investigated in this study. The nature of damage evolution is studied by three complementary perspectives — i) monitoring of the mechanical response, ii) microscopy on the gage length and fracture surface, and iii) probing of the microstructural changes in the bulk nondestructively using acoustic emission. The damage evolution in the composite is driven by strain or fatigue cycles imposed on the specimen and is manifested as three distinct mechanisms: a) cracking at hollow shot particles early in the life, b) microcracking in the form of fracture of fibers oriented in the direction of the loading and splitting or decohesion at fiber/matrix interface of transversely oriented fibers, and c) void formation at fiber ends and other stress concentrations. The interaction among the different modes, which defines the evolution of microstructural damage, is described. A flow chart for the progression of damage is presented and the most important steps in the damage evolution are identified. Suggestions are made for improving fatigue performance by tailoring the microstructure of the composite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of Interfacial Fracture Toughness in High Temperature Composites Fatigue Damage Evolution in a Short Fiber Reinforced Metal Matrix Composite Modeling of Porosity Effects in Gas-Filled Composites Using Biot’s Parameter A Systematic Shear-Lag Approach for Analyzing the Failure Mechanisms in Ceramic Matrix Composites Dislocation Punching in Functionally-Graded Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1