具有随机时间变化的商品远期曲线

S. Ladokhin, M. Schmeck, S. Borovkova
{"title":"具有随机时间变化的商品远期曲线","authors":"S. Ladokhin, M. Schmeck, S. Borovkova","doi":"10.2139/ssrn.3871680","DOIUrl":null,"url":null,"abstract":"Using powerful technique of stochastic time change, we introduce a new two-factor commodity price model, where one of the fundamental factors is the activity rate. This factor implicitly introduces stochastic volatility into the model. The model is developed under both physical and risk neutral probability measures, which allows for a wide range of applications ranging from derivatives pricing to risk management. We derive forward prices and forward curve evolution within the model's framework and develop an ingenious calibration procedure, which allows us to filter out the activity rate from daily observed price data. We apply the model to the rich dataset of daily crude oil and natural gas spot and futures prices and demonstrate its versatility and excellent fit to the historical forward curves.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commodity Forward Curves With Stochastic Time Change\",\"authors\":\"S. Ladokhin, M. Schmeck, S. Borovkova\",\"doi\":\"10.2139/ssrn.3871680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using powerful technique of stochastic time change, we introduce a new two-factor commodity price model, where one of the fundamental factors is the activity rate. This factor implicitly introduces stochastic volatility into the model. The model is developed under both physical and risk neutral probability measures, which allows for a wide range of applications ranging from derivatives pricing to risk management. We derive forward prices and forward curve evolution within the model's framework and develop an ingenious calibration procedure, which allows us to filter out the activity rate from daily observed price data. We apply the model to the rich dataset of daily crude oil and natural gas spot and futures prices and demonstrate its versatility and excellent fit to the historical forward curves.\",\"PeriodicalId\":293888,\"journal\":{\"name\":\"Econometric Modeling: Derivatives eJournal\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Derivatives eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3871680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3871680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用强大的随机时间变化技术,我们引入了一个新的双因素商品价格模型,其中一个基本因素是活动率。这个因素隐含地将随机波动引入模型。该模型是在物理和风险中性概率度量下开发的,它允许从衍生品定价到风险管理的广泛应用。我们在模型框架内推导远期价格和远期曲线演变,并开发了一种巧妙的校准程序,使我们能够从每日观察到的价格数据中过滤出活动率。我们将该模型应用于丰富的原油和天然气每日现货和期货价格数据集,并证明了其通用性和对历史远期曲线的良好拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Commodity Forward Curves With Stochastic Time Change
Using powerful technique of stochastic time change, we introduce a new two-factor commodity price model, where one of the fundamental factors is the activity rate. This factor implicitly introduces stochastic volatility into the model. The model is developed under both physical and risk neutral probability measures, which allows for a wide range of applications ranging from derivatives pricing to risk management. We derive forward prices and forward curve evolution within the model's framework and develop an ingenious calibration procedure, which allows us to filter out the activity rate from daily observed price data. We apply the model to the rich dataset of daily crude oil and natural gas spot and futures prices and demonstrate its versatility and excellent fit to the historical forward curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Macro Hedge for Implicit Options of Type §489 Net Buying Pressure and the Information in Bitcoin Option Trades Futures Contract Collateralization and its Implications Has Manipulation in the VIX Decreased? Optimal Dynamic Futures Portfolio Under a Multifactor Gaussian Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1