基于增强空间约束的模糊聚类脑磁共振图像分割算法

Zexuan Ji, Jinyao Liu, Guannan Li
{"title":"基于增强空间约束的模糊聚类脑磁共振图像分割算法","authors":"Zexuan Ji, Jinyao Liu, Guannan Li","doi":"10.1109/ICOT.2014.6956610","DOIUrl":null,"url":null,"abstract":"Fuzzy clustering has been extensively used in brain magnetic resonance (MR) image segmentation. However, due to the existence of noise and intensity inhomogeneity, many segmentation algorithms suffer from limited accuracy. In this paper, we propose a fuzzy clustering algorithm via enhanced spatially constraint for brain MR image segmentation. A novel spatial factor is proposed by incorporating the spatial information with a simple metric, which is fast and easy to implement. By taking the spatial direction into account based on the posterior and prior probabilities, the proposed method can preserve more details and overcome the over-smoothing disadvantage. Finally, the fuzzy objective function is integrated with the bias field estimation model to overcome intensity inhomogeneity in the image. Experimental results demonstrate that the proposed algorithm can substantially improve the accuracy of brain MR image segmentation.","PeriodicalId":343641,"journal":{"name":"2014 International Conference on Orange Technologies","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fuzzy clustering algorithm via enhanced spatially constraint for brain MR image segmentation\",\"authors\":\"Zexuan Ji, Jinyao Liu, Guannan Li\",\"doi\":\"10.1109/ICOT.2014.6956610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy clustering has been extensively used in brain magnetic resonance (MR) image segmentation. However, due to the existence of noise and intensity inhomogeneity, many segmentation algorithms suffer from limited accuracy. In this paper, we propose a fuzzy clustering algorithm via enhanced spatially constraint for brain MR image segmentation. A novel spatial factor is proposed by incorporating the spatial information with a simple metric, which is fast and easy to implement. By taking the spatial direction into account based on the posterior and prior probabilities, the proposed method can preserve more details and overcome the over-smoothing disadvantage. Finally, the fuzzy objective function is integrated with the bias field estimation model to overcome intensity inhomogeneity in the image. Experimental results demonstrate that the proposed algorithm can substantially improve the accuracy of brain MR image segmentation.\",\"PeriodicalId\":343641,\"journal\":{\"name\":\"2014 International Conference on Orange Technologies\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Orange Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOT.2014.6956610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Orange Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2014.6956610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模糊聚类在脑磁共振图像分割中得到了广泛的应用。然而,由于噪声和强度不均匀性的存在,许多分割算法的精度有限。本文提出了一种基于增强空间约束的模糊聚类算法用于脑磁共振图像分割。提出了一种新的空间因子,将空间信息与一个简单的度量相结合,实现速度快,易于实现。该方法基于后验概率和先验概率考虑了空间方向,保留了更多的细节,克服了过度平滑的缺点。最后,将模糊目标函数与偏置场估计模型相结合,克服图像的强度不均匀性。实验结果表明,该算法能显著提高脑磁共振图像分割的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fuzzy clustering algorithm via enhanced spatially constraint for brain MR image segmentation
Fuzzy clustering has been extensively used in brain magnetic resonance (MR) image segmentation. However, due to the existence of noise and intensity inhomogeneity, many segmentation algorithms suffer from limited accuracy. In this paper, we propose a fuzzy clustering algorithm via enhanced spatially constraint for brain MR image segmentation. A novel spatial factor is proposed by incorporating the spatial information with a simple metric, which is fast and easy to implement. By taking the spatial direction into account based on the posterior and prior probabilities, the proposed method can preserve more details and overcome the over-smoothing disadvantage. Finally, the fuzzy objective function is integrated with the bias field estimation model to overcome intensity inhomogeneity in the image. Experimental results demonstrate that the proposed algorithm can substantially improve the accuracy of brain MR image segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An automatic speaker-speech recognition system for friendly HMI based on binary halved clustering A fuzzy clustering algorithm via enhanced spatially constraint for brain MR image segmentation A novel saliency detection framework for infrared thermal images A multistep liver segmentation strategy by combining level set based method with texture analysis for CT images An emotional feedback system based on a regulation process model for happiness improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1