基于图分析的深度网络实证研究

M. Morshed
{"title":"基于图分析的深度网络实证研究","authors":"M. Morshed","doi":"10.2139/ssrn.3720454","DOIUrl":null,"url":null,"abstract":"The internet can broadly be divided into three parts: surface, deep and dark among which the latter offers anonymity to its users and hosts [1]. Deep Web refers to an encrypted network that is not detected on search engine like Google etc. Users must use Tor to visit sites on the dark web [2]. Ninety six percent of the web is considered as deep web because it is hidden. It is like an iceberg, in that, people can just see a small portion above the surface, while the largest part is hidden under the sea [3, 4, and 5]. Basic methods of graph theory and data mining, that deals with social networks analysis can be comprehensively used to understand and learn Deep Web and detect cyber threats [6]. Since the internet is rapidly evolving and it is nearly impossible to censor the deep web, there is a need to develop standard mechanism and tools to monitor it. In this proposed study, our focus will be to develop standard research mechanism to understand the Deep Web which will support the researchers, academicians and law enforcement agencies to strengthen the social stability and ensure peace locally & globally.","PeriodicalId":406666,"journal":{"name":"Applied Computing eJournal","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Empirical Study of Deep Web based on Graph Analysis\",\"authors\":\"M. Morshed\",\"doi\":\"10.2139/ssrn.3720454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The internet can broadly be divided into three parts: surface, deep and dark among which the latter offers anonymity to its users and hosts [1]. Deep Web refers to an encrypted network that is not detected on search engine like Google etc. Users must use Tor to visit sites on the dark web [2]. Ninety six percent of the web is considered as deep web because it is hidden. It is like an iceberg, in that, people can just see a small portion above the surface, while the largest part is hidden under the sea [3, 4, and 5]. Basic methods of graph theory and data mining, that deals with social networks analysis can be comprehensively used to understand and learn Deep Web and detect cyber threats [6]. Since the internet is rapidly evolving and it is nearly impossible to censor the deep web, there is a need to develop standard mechanism and tools to monitor it. In this proposed study, our focus will be to develop standard research mechanism to understand the Deep Web which will support the researchers, academicians and law enforcement agencies to strengthen the social stability and ensure peace locally & globally.\",\"PeriodicalId\":406666,\"journal\":{\"name\":\"Applied Computing eJournal\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3720454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3720454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

互联网大致可以分为表层、深层和暗层三部分,其中暗层为其用户和主机提供匿名性[1]。深层网络指的是谷歌等搜索引擎无法检测到的加密网络。用户必须使用Tor才能访问暗网上的网站[2]。96%的网络被认为是深网,因为它是隐藏的。它就像一座冰山,人们只能看到水面上的一小部分,而大部分隐藏在海底[3,4,5]。处理社交网络分析的图论和数据挖掘的基本方法可以全面用于理解和学习深度网络并检测网络威胁[6]。由于互联网正在迅速发展,审查深层网络几乎是不可能的,因此有必要开发标准机制和工具来监控它。在本研究中,我们的重点将是建立标准的研究机制来理解深度网络,这将支持研究人员、学者和执法机构加强社会稳定,确保当地和全球的和平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Empirical Study of Deep Web based on Graph Analysis
The internet can broadly be divided into three parts: surface, deep and dark among which the latter offers anonymity to its users and hosts [1]. Deep Web refers to an encrypted network that is not detected on search engine like Google etc. Users must use Tor to visit sites on the dark web [2]. Ninety six percent of the web is considered as deep web because it is hidden. It is like an iceberg, in that, people can just see a small portion above the surface, while the largest part is hidden under the sea [3, 4, and 5]. Basic methods of graph theory and data mining, that deals with social networks analysis can be comprehensively used to understand and learn Deep Web and detect cyber threats [6]. Since the internet is rapidly evolving and it is nearly impossible to censor the deep web, there is a need to develop standard mechanism and tools to monitor it. In this proposed study, our focus will be to develop standard research mechanism to understand the Deep Web which will support the researchers, academicians and law enforcement agencies to strengthen the social stability and ensure peace locally & globally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating the Elasticity of Consumer Prices to the Exchange Rate: An Accounting Approach The Role of Absorptive Capacity and Employee Empowerment in Digital Transformation of SMEs Apple's Mounting App Store Woes SEPs Licensing Across the Supply Chain: An Antitrust Perspective An Analysis on the Implementation of Air Pollution Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1