{"title":"电子束等离子体和自热空心阴极放电沉积sicn涂层条件的比较研究","authors":"A. Menshakov","doi":"10.1109/EFRE47760.2020.9242095","DOIUrl":null,"url":null,"abstract":"The composition of the hollow cathode arc discharge plasma and low-energy electron beam plasma in a gas medium containing hexamethyldisilazane (HMDS) vapors was studied and it was shown that the decomposition degree of HMDS molecules in a beam plasma is higher than in an discharge with a self-heated hollow cathode. SiCN-based coatings with a hardness of up to 18–20 GPA with a deposition rate of ~ 1µm/h at a temperature of 600°C were obtained. The composition of SiCN coatings was studied by IR spectroscopy, and it was shown that in the IR spectra of coatings obtained in a beam plasma, in contrast to deposition in an hollow cathode arc discharge, even in the low-temperature regime, the absorption peaks of the bonds of the initial HMDS molecules are rather low, including hydrogen-containing ones, which may also indicate a more intense decomposition of the precursor in the beam plasma and provides a higher microhardness of SiCN-coatings obtained in beam plasma at low temperatures (<200°C).","PeriodicalId":190249,"journal":{"name":"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of the Conditions for SiCN-Coatings Deposition in a Electron Beam Generated Plasma and in a Discharge with a Self-heated Hollow Cathode\",\"authors\":\"A. Menshakov\",\"doi\":\"10.1109/EFRE47760.2020.9242095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The composition of the hollow cathode arc discharge plasma and low-energy electron beam plasma in a gas medium containing hexamethyldisilazane (HMDS) vapors was studied and it was shown that the decomposition degree of HMDS molecules in a beam plasma is higher than in an discharge with a self-heated hollow cathode. SiCN-based coatings with a hardness of up to 18–20 GPA with a deposition rate of ~ 1µm/h at a temperature of 600°C were obtained. The composition of SiCN coatings was studied by IR spectroscopy, and it was shown that in the IR spectra of coatings obtained in a beam plasma, in contrast to deposition in an hollow cathode arc discharge, even in the low-temperature regime, the absorption peaks of the bonds of the initial HMDS molecules are rather low, including hydrogen-containing ones, which may also indicate a more intense decomposition of the precursor in the beam plasma and provides a higher microhardness of SiCN-coatings obtained in beam plasma at low temperatures (<200°C).\",\"PeriodicalId\":190249,\"journal\":{\"name\":\"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EFRE47760.2020.9242095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFRE47760.2020.9242095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Study of the Conditions for SiCN-Coatings Deposition in a Electron Beam Generated Plasma and in a Discharge with a Self-heated Hollow Cathode
The composition of the hollow cathode arc discharge plasma and low-energy electron beam plasma in a gas medium containing hexamethyldisilazane (HMDS) vapors was studied and it was shown that the decomposition degree of HMDS molecules in a beam plasma is higher than in an discharge with a self-heated hollow cathode. SiCN-based coatings with a hardness of up to 18–20 GPA with a deposition rate of ~ 1µm/h at a temperature of 600°C were obtained. The composition of SiCN coatings was studied by IR spectroscopy, and it was shown that in the IR spectra of coatings obtained in a beam plasma, in contrast to deposition in an hollow cathode arc discharge, even in the low-temperature regime, the absorption peaks of the bonds of the initial HMDS molecules are rather low, including hydrogen-containing ones, which may also indicate a more intense decomposition of the precursor in the beam plasma and provides a higher microhardness of SiCN-coatings obtained in beam plasma at low temperatures (<200°C).