在你的脸上:通过面部特征之间的比例和距离来识别人

Mohammad Alsawwaf, Z. Chaczko, Marek Kulbacki, Nikhil Sarathy
{"title":"在你的脸上:通过面部特征之间的比例和距离来识别人","authors":"Mohammad Alsawwaf, Z. Chaczko, Marek Kulbacki, Nikhil Sarathy","doi":"10.1142/s2196888822500105","DOIUrl":null,"url":null,"abstract":"These days identification of a person is an integral part of many computer-based solutions. It is a key characteristic for access control, customized services, and a proof of identity. Over the last couple of decades, many new techniques were introduced for how to identify human faces. This approach investigates the human face identification based on frontal images by producing ratios from distances between the different features and their locations. Moreover, this extended version includes an investigation of identification based on side profile by extracting and diagnosing the feature sets with geometric ratio expressions which are calculated into feature vectors. The last stage involves using weighted means to calculate the resemblance. The approach considers an explainable Artificial Intelligence (XAI) approach. Findings, based on a small dataset, achieve that the used approach offers promising results. Further research could have a great influence on how faces and face-profiles can be identified. Performance of the proposed system is validated using metrics such as Precision, False Acceptance Rate, False Rejection Rate, and True Positive Rate. Multiple simulations indicate an Equal Error Rate of 0.89. This work is an extended version of the paper submitted in ACIIDS 2020.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"In Your Face: Person Identification Through Ratios and Distances Between Facial Features\",\"authors\":\"Mohammad Alsawwaf, Z. Chaczko, Marek Kulbacki, Nikhil Sarathy\",\"doi\":\"10.1142/s2196888822500105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"These days identification of a person is an integral part of many computer-based solutions. It is a key characteristic for access control, customized services, and a proof of identity. Over the last couple of decades, many new techniques were introduced for how to identify human faces. This approach investigates the human face identification based on frontal images by producing ratios from distances between the different features and their locations. Moreover, this extended version includes an investigation of identification based on side profile by extracting and diagnosing the feature sets with geometric ratio expressions which are calculated into feature vectors. The last stage involves using weighted means to calculate the resemblance. The approach considers an explainable Artificial Intelligence (XAI) approach. Findings, based on a small dataset, achieve that the used approach offers promising results. Further research could have a great influence on how faces and face-profiles can be identified. Performance of the proposed system is validated using metrics such as Precision, False Acceptance Rate, False Rejection Rate, and True Positive Rate. Multiple simulations indicate an Equal Error Rate of 0.89. This work is an extended version of the paper submitted in ACIIDS 2020.\",\"PeriodicalId\":256649,\"journal\":{\"name\":\"Vietnam. J. Comput. Sci.\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam. J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2196888822500105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888822500105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

如今,人的身份识别是许多基于计算机的解决方案的一个组成部分。它是访问控制、定制服务和身份证明的关键特性。在过去的几十年里,人们引入了许多新的技术来识别人脸。该方法通过从不同特征与其位置之间的距离产生比率来研究基于正面图像的人脸识别。此外,该扩展版本还研究了基于侧轮廓的识别,通过几何比例表达式提取和诊断特征集,并将其计算为特征向量。最后一个阶段是使用加权方法来计算相似度。该方法考虑了一种可解释的人工智能(XAI)方法。基于一个小数据集的研究结果表明,所使用的方法提供了有希望的结果。进一步的研究可能对如何识别人脸和面部轮廓有很大的影响。使用精度、错误接受率、错误拒绝率和真阳性率等指标验证所提议系统的性能。多次模拟表明错误率为0.89。这项工作是在ACIIDS 2020上提交的论文的扩展版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Your Face: Person Identification Through Ratios and Distances Between Facial Features
These days identification of a person is an integral part of many computer-based solutions. It is a key characteristic for access control, customized services, and a proof of identity. Over the last couple of decades, many new techniques were introduced for how to identify human faces. This approach investigates the human face identification based on frontal images by producing ratios from distances between the different features and their locations. Moreover, this extended version includes an investigation of identification based on side profile by extracting and diagnosing the feature sets with geometric ratio expressions which are calculated into feature vectors. The last stage involves using weighted means to calculate the resemblance. The approach considers an explainable Artificial Intelligence (XAI) approach. Findings, based on a small dataset, achieve that the used approach offers promising results. Further research could have a great influence on how faces and face-profiles can be identified. Performance of the proposed system is validated using metrics such as Precision, False Acceptance Rate, False Rejection Rate, and True Positive Rate. Multiple simulations indicate an Equal Error Rate of 0.89. This work is an extended version of the paper submitted in ACIIDS 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1