{"title":"未来时间时间路径查询","authors":"Christos Gkartzios, E. Pitoura","doi":"10.1145/3594778.3594879","DOIUrl":null,"url":null,"abstract":"Most previous research considers processing queries on the current or previous states of a graph. In this paper, we propose processing future-time graph queries, i.e., predicting the output of a query on some future state of the graph. To process future-time queries, we present a generic approach that exploits a predictive model that provides oracles about the future state of the graph. We focus on future-time shortest path queries that given a temporal graph and two nodes return the shortest path between them at some future time. We present two algorithms each invoking a different type of oracle: (a) a link prediction oracle that given two nodes returns the probability of an edge between them, and (b) a connection prediction oracle that given a node u and a future time instance t returns the node υ that u will connect to at t. Finally, we present experimental results using off-the-shelf prediction models that provide such oracles.","PeriodicalId":371215,"journal":{"name":"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Future-Time Temporal Path Queries\",\"authors\":\"Christos Gkartzios, E. Pitoura\",\"doi\":\"10.1145/3594778.3594879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most previous research considers processing queries on the current or previous states of a graph. In this paper, we propose processing future-time graph queries, i.e., predicting the output of a query on some future state of the graph. To process future-time queries, we present a generic approach that exploits a predictive model that provides oracles about the future state of the graph. We focus on future-time shortest path queries that given a temporal graph and two nodes return the shortest path between them at some future time. We present two algorithms each invoking a different type of oracle: (a) a link prediction oracle that given two nodes returns the probability of an edge between them, and (b) a connection prediction oracle that given a node u and a future time instance t returns the node υ that u will connect to at t. Finally, we present experimental results using off-the-shelf prediction models that provide such oracles.\",\"PeriodicalId\":371215,\"journal\":{\"name\":\"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3594778.3594879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3594778.3594879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数先前的研究都考虑对图的当前或以前的状态处理查询。在本文中,我们提出了处理未来时间图查询,即预测在图的某些未来状态下查询的输出。为了处理未来的查询,我们提出了一种利用预测模型的通用方法,该模型提供了关于图的未来状态的预言。我们关注的是未来时间最短路径查询,它给出一个时间图,两个节点返回它们之间在未来某个时间的最短路径。我们提出了两种算法,每种算法调用不同类型的oracle:(a)给定两个节点返回它们之间边的概率的链接预测oracle,以及(b)给定节点u和未来时间实例t的连接预测oracle,返回u将在t连接到的节点υ。最后,我们使用现成的预测模型提供了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Future-Time Temporal Path Queries
Most previous research considers processing queries on the current or previous states of a graph. In this paper, we propose processing future-time graph queries, i.e., predicting the output of a query on some future state of the graph. To process future-time queries, we present a generic approach that exploits a predictive model that provides oracles about the future state of the graph. We focus on future-time shortest path queries that given a temporal graph and two nodes return the shortest path between them at some future time. We present two algorithms each invoking a different type of oracle: (a) a link prediction oracle that given two nodes returns the probability of an edge between them, and (b) a connection prediction oracle that given a node u and a future time instance t returns the node υ that u will connect to at t. Finally, we present experimental results using off-the-shelf prediction models that provide such oracles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Better Distributed Graph Query Planning With Scouting Queries Fast Synthetic Data-Aware Log Generation for Temporal Declarative Models Future-Time Temporal Path Queries Going with the Flow: Real-Time Max-Flow on Asynchronous Dynamic Graphs The Commercial Side of Graph Analytics: Big Uses, Big Mistakes, Big Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1