{"title":"稀疏矩阵向量乘法的一种新型多gpu并行优化模型","authors":"Jiaquan Gao, Yuanshen Zhou, Kesong Wu","doi":"10.1142/S0129626416400016","DOIUrl":null,"url":null,"abstract":"Accelerating the sparse matrix-vector multiplication (SpMV) on the graphics processing units (GPUs) has attracted considerable attention recently. We observe that on a specific multiple-GPU platform, the SpMV performance can usually be greatly improved when a matrix is partitioned into several blocks according to a predetermined rule and each block is assigned to a GPU with an appropriate storage format. This motivates us to propose a novel multi-GPU parallel SpMV optimization model. Our model involves two stages. In the first stage, a simple rule is defined to divide any given matrix among multiple GPUs, and then a performance model, which is independent of the problems and dependent on the resources of devices, is proposed to accurately predict the execution time of SpMV kernels. Using these models, we construct in the second stage an optimally multi-GPU parallel SpMV algorithm that is automatically and rapidly generated for the platform for any problem. Given that our model for SpMV is general, indepen...","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Multi-GPU Parallel Optimization Model for The Sparse Matrix-Vector Multiplication\",\"authors\":\"Jiaquan Gao, Yuanshen Zhou, Kesong Wu\",\"doi\":\"10.1142/S0129626416400016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerating the sparse matrix-vector multiplication (SpMV) on the graphics processing units (GPUs) has attracted considerable attention recently. We observe that on a specific multiple-GPU platform, the SpMV performance can usually be greatly improved when a matrix is partitioned into several blocks according to a predetermined rule and each block is assigned to a GPU with an appropriate storage format. This motivates us to propose a novel multi-GPU parallel SpMV optimization model. Our model involves two stages. In the first stage, a simple rule is defined to divide any given matrix among multiple GPUs, and then a performance model, which is independent of the problems and dependent on the resources of devices, is proposed to accurately predict the execution time of SpMV kernels. Using these models, we construct in the second stage an optimally multi-GPU parallel SpMV algorithm that is automatically and rapidly generated for the platform for any problem. Given that our model for SpMV is general, indepen...\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129626416400016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626416400016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Multi-GPU Parallel Optimization Model for The Sparse Matrix-Vector Multiplication
Accelerating the sparse matrix-vector multiplication (SpMV) on the graphics processing units (GPUs) has attracted considerable attention recently. We observe that on a specific multiple-GPU platform, the SpMV performance can usually be greatly improved when a matrix is partitioned into several blocks according to a predetermined rule and each block is assigned to a GPU with an appropriate storage format. This motivates us to propose a novel multi-GPU parallel SpMV optimization model. Our model involves two stages. In the first stage, a simple rule is defined to divide any given matrix among multiple GPUs, and then a performance model, which is independent of the problems and dependent on the resources of devices, is proposed to accurately predict the execution time of SpMV kernels. Using these models, we construct in the second stage an optimally multi-GPU parallel SpMV algorithm that is automatically and rapidly generated for the platform for any problem. Given that our model for SpMV is general, indepen...