基于BP神经网络自整定的车辆车道保持自适应PID控制

G. Zhenhai, Z. Bo
{"title":"基于BP神经网络自整定的车辆车道保持自适应PID控制","authors":"G. Zhenhai, Z. Bo","doi":"10.1109/IVS.2005.1505082","DOIUrl":null,"url":null,"abstract":"According to the nonlinear and parameter time-varying characteristics of vehicle lateral dynamics, a novel algorithm of vehicle lateral adaptive PID control with BP neural network was proposed, using the approximate ability to any nonlinear function of the neural network. The results of the simulation in different velocities and lane curvature conditions show that the algorithm can effectively control vehicle to keep and track the pre-given trajectory and the good robustness and adaptability for the changing of velocity and path curvature is also shown.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Vehicle lane keeping of adaptive PID control with BP neural network self-tuning\",\"authors\":\"G. Zhenhai, Z. Bo\",\"doi\":\"10.1109/IVS.2005.1505082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the nonlinear and parameter time-varying characteristics of vehicle lateral dynamics, a novel algorithm of vehicle lateral adaptive PID control with BP neural network was proposed, using the approximate ability to any nonlinear function of the neural network. The results of the simulation in different velocities and lane curvature conditions show that the algorithm can effectively control vehicle to keep and track the pre-given trajectory and the good robustness and adaptability for the changing of velocity and path curvature is also shown.\",\"PeriodicalId\":386189,\"journal\":{\"name\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2005.1505082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

针对车辆横向动力学的非线性和参数时变特性,利用BP神经网络对任意非线性函数的逼近能力,提出了一种基于BP神经网络的车辆横向自适应PID控制算法。在不同速度和曲率条件下的仿真结果表明,该算法能有效地控制车辆保持和跟踪预定轨迹,对速度和路径曲率的变化具有良好的鲁棒性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vehicle lane keeping of adaptive PID control with BP neural network self-tuning
According to the nonlinear and parameter time-varying characteristics of vehicle lateral dynamics, a novel algorithm of vehicle lateral adaptive PID control with BP neural network was proposed, using the approximate ability to any nonlinear function of the neural network. The results of the simulation in different velocities and lane curvature conditions show that the algorithm can effectively control vehicle to keep and track the pre-given trajectory and the good robustness and adaptability for the changing of velocity and path curvature is also shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A statistical based UWB multipath channel model for the indoor environments WPAN applications Visual-based assistance for electric vehicle driving Cooperative driving and lane changing at blind crossings Vehicle localization on a digital map using particles filtering Past, current and future on nonlinear dynamics and noise origins of non-smooth gear transmission dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1