C. Felgueiras, Dinis Areias, J. Macedo, A. Fidalgo, G. Alves
{"title":"重塑模拟世界的数字方法","authors":"C. Felgueiras, Dinis Areias, J. Macedo, A. Fidalgo, G. Alves","doi":"10.1109/REV.2016.7444504","DOIUrl":null,"url":null,"abstract":"Analog and digital design are subjects in the Electronic Engineering curricula. Being apparently similar subjects they are quite contradictory in design flow level as a result of each technological area maturation state. As so, teaching methodologies are also very different, being challenging for both teachers and students. In fact, electronic design in the digital field is centered in the use of microprocessor and FPGA based circuits taking advantage from the relatively high level programing/configuring languages such as C or VHDL. Later on, at the debug stage, all changes will take place at software level only, being relatively easy to implement them. In a very different way, the analog design is traditionally based on the use of elementary components associated with macroblocks in order to built-up the wanted mission circuit. At the debug stage any circuit modification embraces necessarily some degree of hardware changing, with the all associated difficulties. As result, a massive share of electronic engineering students prefers to develop electronic work only at digital arena, generating um undesirable and unbalanced situation. This work relates the analog and digital design flow and proposes the use of analog programmable/configurable (e.g. FPAA, PSoC) circuits as a way to get the analog arena more attractive for electronic student and therefore balance analog and digital arenas at number of students level. This strategy, however, bring some drawbacks once it evolves the use of concepts not often taught in the traditional analog design classes. To surpass then is proposed the development of dedicated pedagogical materials making use of the ICT and including dedicated remote labs.","PeriodicalId":251236,"journal":{"name":"2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)","volume":"49 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reshaping digital methodologies to the analog world\",\"authors\":\"C. Felgueiras, Dinis Areias, J. Macedo, A. Fidalgo, G. Alves\",\"doi\":\"10.1109/REV.2016.7444504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analog and digital design are subjects in the Electronic Engineering curricula. Being apparently similar subjects they are quite contradictory in design flow level as a result of each technological area maturation state. As so, teaching methodologies are also very different, being challenging for both teachers and students. In fact, electronic design in the digital field is centered in the use of microprocessor and FPGA based circuits taking advantage from the relatively high level programing/configuring languages such as C or VHDL. Later on, at the debug stage, all changes will take place at software level only, being relatively easy to implement them. In a very different way, the analog design is traditionally based on the use of elementary components associated with macroblocks in order to built-up the wanted mission circuit. At the debug stage any circuit modification embraces necessarily some degree of hardware changing, with the all associated difficulties. As result, a massive share of electronic engineering students prefers to develop electronic work only at digital arena, generating um undesirable and unbalanced situation. This work relates the analog and digital design flow and proposes the use of analog programmable/configurable (e.g. FPAA, PSoC) circuits as a way to get the analog arena more attractive for electronic student and therefore balance analog and digital arenas at number of students level. This strategy, however, bring some drawbacks once it evolves the use of concepts not often taught in the traditional analog design classes. To surpass then is proposed the development of dedicated pedagogical materials making use of the ICT and including dedicated remote labs.\",\"PeriodicalId\":251236,\"journal\":{\"name\":\"2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)\",\"volume\":\"49 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REV.2016.7444504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REV.2016.7444504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reshaping digital methodologies to the analog world
Analog and digital design are subjects in the Electronic Engineering curricula. Being apparently similar subjects they are quite contradictory in design flow level as a result of each technological area maturation state. As so, teaching methodologies are also very different, being challenging for both teachers and students. In fact, electronic design in the digital field is centered in the use of microprocessor and FPGA based circuits taking advantage from the relatively high level programing/configuring languages such as C or VHDL. Later on, at the debug stage, all changes will take place at software level only, being relatively easy to implement them. In a very different way, the analog design is traditionally based on the use of elementary components associated with macroblocks in order to built-up the wanted mission circuit. At the debug stage any circuit modification embraces necessarily some degree of hardware changing, with the all associated difficulties. As result, a massive share of electronic engineering students prefers to develop electronic work only at digital arena, generating um undesirable and unbalanced situation. This work relates the analog and digital design flow and proposes the use of analog programmable/configurable (e.g. FPAA, PSoC) circuits as a way to get the analog arena more attractive for electronic student and therefore balance analog and digital arenas at number of students level. This strategy, however, bring some drawbacks once it evolves the use of concepts not often taught in the traditional analog design classes. To surpass then is proposed the development of dedicated pedagogical materials making use of the ICT and including dedicated remote labs.