采用Big-Bang和Big-Crunch优化方法的成本函数和混合整数控制变量的阀点负荷最优潮流。

C. V. G. K. Rao, G. Yesuratnam
{"title":"采用Big-Bang和Big-Crunch优化方法的成本函数和混合整数控制变量的阀点负荷最优潮流。","authors":"C. V. G. K. Rao, G. Yesuratnam","doi":"10.14419/JACST.V2I1.522","DOIUrl":null,"url":null,"abstract":"This paper presents application of Big Bang and Big crunch(BB-BC) a nature inspired optimization method which is developed from the concepts of universal evolution to solve complex static optimal power flow (OPF) with an aim to obtain minimum cost of thermal power generating units whose cost functions are non-convex due to valve point loading effects. Control variables to optimize cost functions by satisfying usual constraints of OPF are of continuous and discrete type (mixedinteger control variables). Mathematical programming approaches presents problem in solving non-convex OPF. Nature inspired heuristic methods can be applied to solve such non-convex optimization problems. One of the requirements of heuristic methods is numerical simplicity without trial parameters in update equation of optimization along with reliability and ease in developing computer code for implementation. Most of the nature inspired methods search efficiency and reliability depends on choice of trial parameters to update control variables as optimization advances in search of optimal control variables.BB-BC optimization has search ability on par with other popular heuristic methods but free from choice of trial parameters is applied to obtain OPF solutions on two typical power systems networks and results are compared with MATLAB-7.0 pattern random search optimization tool box .Digital simulation results indicates a promising nature of the BB-BC to deal with non-convex optimization requirements of power system situations .","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimal Power flow with valve point loading effects of cost function and mixed-integer control variables using Big-Bang and Big-Crunch optimization.\",\"authors\":\"C. V. G. K. Rao, G. Yesuratnam\",\"doi\":\"10.14419/JACST.V2I1.522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents application of Big Bang and Big crunch(BB-BC) a nature inspired optimization method which is developed from the concepts of universal evolution to solve complex static optimal power flow (OPF) with an aim to obtain minimum cost of thermal power generating units whose cost functions are non-convex due to valve point loading effects. Control variables to optimize cost functions by satisfying usual constraints of OPF are of continuous and discrete type (mixedinteger control variables). Mathematical programming approaches presents problem in solving non-convex OPF. Nature inspired heuristic methods can be applied to solve such non-convex optimization problems. One of the requirements of heuristic methods is numerical simplicity without trial parameters in update equation of optimization along with reliability and ease in developing computer code for implementation. Most of the nature inspired methods search efficiency and reliability depends on choice of trial parameters to update control variables as optimization advances in search of optimal control variables.BB-BC optimization has search ability on par with other popular heuristic methods but free from choice of trial parameters is applied to obtain OPF solutions on two typical power systems networks and results are compared with MATLAB-7.0 pattern random search optimization tool box .Digital simulation results indicates a promising nature of the BB-BC to deal with non-convex optimization requirements of power system situations .\",\"PeriodicalId\":445404,\"journal\":{\"name\":\"Journal of Advanced Computer Science and Technology\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computer Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/JACST.V2I1.522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/JACST.V2I1.522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文应用大爆炸大压缩优化方法(BB-BC)求解复杂静态最优潮流(OPF)问题,该优化方法是由普遍演化的概念发展而来的,其目标是使成本函数因阀点负荷效应而非凸的火电机组成本最小。控制变量是连续型和离散型(混合整数控制变量)。数学规划方法在求解非凸OPF中存在问题。自然启发的启发式方法可以用于解决这类非凸优化问题。启发式方法的要求之一是在优化更新方程中不需要试验参数的数值简单性,以及可靠性和易于编写实现的计算机代码。大多数自然启发方法的搜索效率和可靠性取决于在搜索最优控制变量的过程中,对试验参数的选择来更新控制变量。将BB-BC算法应用于两种典型的电力系统网络,并与MATLAB-7.0模式随机搜索优化工具箱进行了比较。数字仿真结果表明BB-BC算法在解决电力系统非凸优化要求方面具有良好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Power flow with valve point loading effects of cost function and mixed-integer control variables using Big-Bang and Big-Crunch optimization.
This paper presents application of Big Bang and Big crunch(BB-BC) a nature inspired optimization method which is developed from the concepts of universal evolution to solve complex static optimal power flow (OPF) with an aim to obtain minimum cost of thermal power generating units whose cost functions are non-convex due to valve point loading effects. Control variables to optimize cost functions by satisfying usual constraints of OPF are of continuous and discrete type (mixedinteger control variables). Mathematical programming approaches presents problem in solving non-convex OPF. Nature inspired heuristic methods can be applied to solve such non-convex optimization problems. One of the requirements of heuristic methods is numerical simplicity without trial parameters in update equation of optimization along with reliability and ease in developing computer code for implementation. Most of the nature inspired methods search efficiency and reliability depends on choice of trial parameters to update control variables as optimization advances in search of optimal control variables.BB-BC optimization has search ability on par with other popular heuristic methods but free from choice of trial parameters is applied to obtain OPF solutions on two typical power systems networks and results are compared with MATLAB-7.0 pattern random search optimization tool box .Digital simulation results indicates a promising nature of the BB-BC to deal with non-convex optimization requirements of power system situations .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the performance of machine learning algorithms for network intrusion detection systems in the internet of things infrastructure Geometric Approach to Optimal Path Problem with Uncertain Arc Lengths Statistical adjustment of the parameters of multi-objective optimization problems with design expert method Circular Gabor wavelet algorithm for fingerprint liveness detection Numerical analysis of transcritical carbon dioxide compression cycle: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1