一种精确的、自动的电子层析成像无标记校准方法

Qi Chu, Fa Zhang, Kai Zhang, Xiaohua Wan, Mingwei Chen, Zhiyong Liu
{"title":"一种精确的、自动的电子层析成像无标记校准方法","authors":"Qi Chu, Fa Zhang, Kai Zhang, Xiaohua Wan, Mingwei Chen, Zhiyong Liu","doi":"10.1109/BIBM.2010.5706597","DOIUrl":null,"url":null,"abstract":"Accurate alignment of electron tomographic images without using embedded gold particles as fiducial markers is still a challenge. Here we propose a new markerless alignment method that employs Scale Invariant Feature Transform features (SIFT) as virtual markers. It differs from other types of feature in a way the sufficient and distinctive information it represents. This characteristic makes the following feature matching and tracking steps automatic and more reliable, which allows for estimating alignment parameters accurately. Furthermore, we use Sparse Bundle Adjustment (SPA) with M-estimation to estimate alignment parameters for each image. Experiments show that our method can achieve a reprojection residual less than 0.4 pixel and can approach the same accuracy of marker alignment. Besides, our method can apply to adjusting typical misalignments such as magnitude divergences or in-plane rotation and can detect bad images.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An accurate, automatic method for markerless alignment of electron tomographic images\",\"authors\":\"Qi Chu, Fa Zhang, Kai Zhang, Xiaohua Wan, Mingwei Chen, Zhiyong Liu\",\"doi\":\"10.1109/BIBM.2010.5706597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate alignment of electron tomographic images without using embedded gold particles as fiducial markers is still a challenge. Here we propose a new markerless alignment method that employs Scale Invariant Feature Transform features (SIFT) as virtual markers. It differs from other types of feature in a way the sufficient and distinctive information it represents. This characteristic makes the following feature matching and tracking steps automatic and more reliable, which allows for estimating alignment parameters accurately. Furthermore, we use Sparse Bundle Adjustment (SPA) with M-estimation to estimate alignment parameters for each image. Experiments show that our method can achieve a reprojection residual less than 0.4 pixel and can approach the same accuracy of marker alignment. Besides, our method can apply to adjusting typical misalignments such as magnitude divergences or in-plane rotation and can detect bad images.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在不使用嵌入金颗粒作为基准标记的情况下对电子层析图像进行精确对齐仍然是一个挑战。本文提出了一种利用尺度不变特征变换特征(SIFT)作为虚拟标记的无标记对齐方法。它与其他类型的特征的不同之处在于它所代表的充分和独特的信息。这一特性使得以下特征匹配和跟踪步骤自动且更可靠,从而可以准确地估计对准参数。此外,我们使用带有m估计的稀疏束调整(SPA)来估计每个图像的对齐参数。实验结果表明,该方法可以获得小于0.4像素的重投影残差,并可以达到与标记对齐相同的精度。此外,该方法还可用于校正星等差异或平面内旋转等典型的不对准,并能检测出不良图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An accurate, automatic method for markerless alignment of electron tomographic images
Accurate alignment of electron tomographic images without using embedded gold particles as fiducial markers is still a challenge. Here we propose a new markerless alignment method that employs Scale Invariant Feature Transform features (SIFT) as virtual markers. It differs from other types of feature in a way the sufficient and distinctive information it represents. This characteristic makes the following feature matching and tracking steps automatic and more reliable, which allows for estimating alignment parameters accurately. Furthermore, we use Sparse Bundle Adjustment (SPA) with M-estimation to estimate alignment parameters for each image. Experiments show that our method can achieve a reprojection residual less than 0.4 pixel and can approach the same accuracy of marker alignment. Besides, our method can apply to adjusting typical misalignments such as magnitude divergences or in-plane rotation and can detect bad images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1