Qijing Wang, Bentian Jiang, Martin D. F. Wong, Evangeline F. Y. Young
{"title":"A2-ILT: GPU加速ILT,具有空间注意机制","authors":"Qijing Wang, Bentian Jiang, Martin D. F. Wong, Evangeline F. Y. Young","doi":"10.1145/3489517.3530579","DOIUrl":null,"url":null,"abstract":"Inverse lithography technology (ILT) is one of the promising resolution enhancement techniques (RETs) in modern design-for-manufacturing closure, however, it suffers from huge computational overhead and unaffordable mask writing time. In this paper, we propose A2-ILT, a GPU-accelerated ILT framework with spatial attention mechanism. Based on the previous GPU-accelerated ILT flow, we significantly improve the ILT quality by introducing spatial attention map and on-the-fly mask rectilinearization, and strengthen the robustness by Reinforcement-Learning deployment. Experimental results show that, comparing to the state-of-the-art solutions, A2-ILT achieves 5.06% and 11.60% reduction in printing error and process variation band with a lower mask complexity and superior runtime performance.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A2-ILT: GPU accelerated ILT with spatial attention mechanism\",\"authors\":\"Qijing Wang, Bentian Jiang, Martin D. F. Wong, Evangeline F. Y. Young\",\"doi\":\"10.1145/3489517.3530579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverse lithography technology (ILT) is one of the promising resolution enhancement techniques (RETs) in modern design-for-manufacturing closure, however, it suffers from huge computational overhead and unaffordable mask writing time. In this paper, we propose A2-ILT, a GPU-accelerated ILT framework with spatial attention mechanism. Based on the previous GPU-accelerated ILT flow, we significantly improve the ILT quality by introducing spatial attention map and on-the-fly mask rectilinearization, and strengthen the robustness by Reinforcement-Learning deployment. Experimental results show that, comparing to the state-of-the-art solutions, A2-ILT achieves 5.06% and 11.60% reduction in printing error and process variation band with a lower mask complexity and superior runtime performance.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A2-ILT: GPU accelerated ILT with spatial attention mechanism
Inverse lithography technology (ILT) is one of the promising resolution enhancement techniques (RETs) in modern design-for-manufacturing closure, however, it suffers from huge computational overhead and unaffordable mask writing time. In this paper, we propose A2-ILT, a GPU-accelerated ILT framework with spatial attention mechanism. Based on the previous GPU-accelerated ILT flow, we significantly improve the ILT quality by introducing spatial attention map and on-the-fly mask rectilinearization, and strengthen the robustness by Reinforcement-Learning deployment. Experimental results show that, comparing to the state-of-the-art solutions, A2-ILT achieves 5.06% and 11.60% reduction in printing error and process variation band with a lower mask complexity and superior runtime performance.