高效时钟漂移预测方法及其在IEEE 802.15.4中的适用性

M. Brzozowski, Hendrik Salomon, P. Langendörfer
{"title":"高效时钟漂移预测方法及其在IEEE 802.15.4中的适用性","authors":"M. Brzozowski, Hendrik Salomon, P. Langendörfer","doi":"10.1109/EUC.2010.39","DOIUrl":null,"url":null,"abstract":"Sensor nodes compensate clock drift with guard times (GT), which results in idle listening. By applying prediction methods nodes can limit drift uncertainty for upcoming frames and shorten GT. However, a common solution based on linear regression requires floating-point arithmetic, i.e. large computation and memory overhead. We present an approach for drift prediction based on moving average, which works well with basic mathematical operations. It achieves similar accuracy to linear regression in indoor environments (the standard deviation of the drift prediction is less than a clock tick for 1-minute period) and even better results on some nodes outdoors. Moreover, it needs only 3 previous drift samples for accurate drift estimations. Our two-week drift experiments revealed that in outdoor scenarios nodes received 99% of frames with GT 8x shorter than the worst case. We exploit the idea of deliberately giving up the reception of approx. 1% of frames in order to use very short GT and to reduce idle listening. After applying our drift prediction approach we shortened GT by 95%. It results in 10% lifetime gain for IEEE 802.15.4.","PeriodicalId":265175,"journal":{"name":"2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On Efficient Clock Drift Prediction Means and their Applicability to IEEE 802.15.4\",\"authors\":\"M. Brzozowski, Hendrik Salomon, P. Langendörfer\",\"doi\":\"10.1109/EUC.2010.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensor nodes compensate clock drift with guard times (GT), which results in idle listening. By applying prediction methods nodes can limit drift uncertainty for upcoming frames and shorten GT. However, a common solution based on linear regression requires floating-point arithmetic, i.e. large computation and memory overhead. We present an approach for drift prediction based on moving average, which works well with basic mathematical operations. It achieves similar accuracy to linear regression in indoor environments (the standard deviation of the drift prediction is less than a clock tick for 1-minute period) and even better results on some nodes outdoors. Moreover, it needs only 3 previous drift samples for accurate drift estimations. Our two-week drift experiments revealed that in outdoor scenarios nodes received 99% of frames with GT 8x shorter than the worst case. We exploit the idea of deliberately giving up the reception of approx. 1% of frames in order to use very short GT and to reduce idle listening. After applying our drift prediction approach we shortened GT by 95%. It results in 10% lifetime gain for IEEE 802.15.4.\",\"PeriodicalId\":265175,\"journal\":{\"name\":\"2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUC.2010.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUC.2010.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

传感器节点用保护时间(GT)补偿时钟漂移,导致空闲侦听。通过应用预测方法,节点可以限制即将到来的帧的漂移不确定性并缩短GT。然而,基于线性回归的通用解决方案需要浮点算法,即计算和内存开销大。我们提出了一种基于移动平均的漂移预测方法,该方法可以很好地应用于基本的数学运算。它在室内环境中实现了与线性回归相似的精度(漂移预测的标准偏差小于1分钟周期内的时钟滴答),在室外的一些节点上甚至取得了更好的结果。而且,只需要3个先前的漂移样本就可以进行精确的漂移估计。我们为期两周的漂移实验表明,在室外场景中,节点接收到的帧中有99%的帧比最坏情况下的帧短8倍。我们利用了故意放弃接受近似的想法。1%的帧,以便使用非常短的GT并减少空闲侦听。应用我们的漂移预测方法后,我们将GT缩短了95%。它为IEEE 802.15.4带来10%的寿命增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Efficient Clock Drift Prediction Means and their Applicability to IEEE 802.15.4
Sensor nodes compensate clock drift with guard times (GT), which results in idle listening. By applying prediction methods nodes can limit drift uncertainty for upcoming frames and shorten GT. However, a common solution based on linear regression requires floating-point arithmetic, i.e. large computation and memory overhead. We present an approach for drift prediction based on moving average, which works well with basic mathematical operations. It achieves similar accuracy to linear regression in indoor environments (the standard deviation of the drift prediction is less than a clock tick for 1-minute period) and even better results on some nodes outdoors. Moreover, it needs only 3 previous drift samples for accurate drift estimations. Our two-week drift experiments revealed that in outdoor scenarios nodes received 99% of frames with GT 8x shorter than the worst case. We exploit the idea of deliberately giving up the reception of approx. 1% of frames in order to use very short GT and to reduce idle listening. After applying our drift prediction approach we shortened GT by 95%. It results in 10% lifetime gain for IEEE 802.15.4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Power Control for Mobile Wireless Networks with Time-Varying Delay Localization with a Mobile Beacon in Underwater Sensor Networks Node Trust Assessment in Mobile Ad Hoc Networks Based on Multi-dimensional Fuzzy Decision Making An Application Framework for Loosely Coupled Networked Cyber-Physical Systems On Efficient Clock Drift Prediction Means and their Applicability to IEEE 802.15.4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1