基于频繁项集挖掘的集成学习异常检测

Saeid Soheily-Khah, Yiming Wu
{"title":"基于频繁项集挖掘的集成学习异常检测","authors":"Saeid Soheily-Khah, Yiming Wu","doi":"10.5121/csit.2019.90931","DOIUrl":null,"url":null,"abstract":"Anomaly detection is vital for automated data analysis, with specific applications spanning almost every domain. In this paper, we propose a hybrid supervised learning of anomaly detection using frequent itemset mining and random forest with an ensemble probabilistic voting method, which outperforms the alternative supervised learning methods through the commonly used measures for anomaly detection: accuracy, true positive rate (i.e. recall) and false positive rate. To justify our claim, a benchmark dataset is used to evaluate the efficiency of the proposed approach, where the results illustrate its benefits.","PeriodicalId":248929,"journal":{"name":"9th International Conference on Computer Science, Engineering and Applications (CCSEA 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ensemble learning using frequent itemset mining for anomaly detection\",\"authors\":\"Saeid Soheily-Khah, Yiming Wu\",\"doi\":\"10.5121/csit.2019.90931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection is vital for automated data analysis, with specific applications spanning almost every domain. In this paper, we propose a hybrid supervised learning of anomaly detection using frequent itemset mining and random forest with an ensemble probabilistic voting method, which outperforms the alternative supervised learning methods through the commonly used measures for anomaly detection: accuracy, true positive rate (i.e. recall) and false positive rate. To justify our claim, a benchmark dataset is used to evaluate the efficiency of the proposed approach, where the results illustrate its benefits.\",\"PeriodicalId\":248929,\"journal\":{\"name\":\"9th International Conference on Computer Science, Engineering and Applications (CCSEA 2019)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Computer Science, Engineering and Applications (CCSEA 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2019.90931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Computer Science, Engineering and Applications (CCSEA 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2019.90931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

异常检测对于自动化数据分析至关重要,其特定应用几乎跨越每个领域。在本文中,我们提出了一种混合监督学习的异常检测方法,使用频繁项集挖掘和随机森林与集成概率投票方法,通过异常检测的常用度量:准确率,真阳性率(即召回率)和假阳性率,该方法优于其他监督学习方法。为了证明我们的说法是正确的,我们使用了一个基准数据集来评估所提出方法的效率,结果说明了它的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble learning using frequent itemset mining for anomaly detection
Anomaly detection is vital for automated data analysis, with specific applications spanning almost every domain. In this paper, we propose a hybrid supervised learning of anomaly detection using frequent itemset mining and random forest with an ensemble probabilistic voting method, which outperforms the alternative supervised learning methods through the commonly used measures for anomaly detection: accuracy, true positive rate (i.e. recall) and false positive rate. To justify our claim, a benchmark dataset is used to evaluate the efficiency of the proposed approach, where the results illustrate its benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Context-Aware Trust-Based Access Control for Ubiquitous Systems An Innovative Approach to User Interface Engineering Attribute Reduction and Decision Tree Pruning to Simplify Liver Fibrosis Prediction Algorithms A Cohort Study Ensemble learning using frequent itemset mining for anomaly detection Security Considerations for Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1