植物病害检测的机器学习技术:使用自定义数据集进行评估

Amatullah Fatwimah Humairaa Mahomodally, Geerish Suddul, S. Armoogum
{"title":"植物病害检测的机器学习技术:使用自定义数据集进行评估","authors":"Amatullah Fatwimah Humairaa Mahomodally, Geerish Suddul, S. Armoogum","doi":"10.11591/ijict.v12i2.pp127-139","DOIUrl":null,"url":null,"abstract":"Diseases in edible and industrial plants remains a major concern, affecting producers and consumers. The problem is further exacerbated as there are different species of plants with a wide variety of diseases that reduce the effectiveness of certain pesticides while increasing our risk of illness. A timely, accurate and automated detection of diseases can be beneficial. Our work focuses on evaluating deep learning (DL) approaches using transfer learning to automatically detect diseases in plants. To enhance the capabilities of our approach, we compiled a novel image dataset containing 87,570 records encompassing 32 different plants and 74 types of diseases. The dataset consists of leaf images from both laboratory setups and cultivation fields, making it more representative. To the best of our knowledge, no such datasets have been used for DL models. Four pre[1]trained computer vision models, namely VGG-16, VGG-19, ResNet-50, and ResNet-101 were evaluated on our dataset. Our experiments demonstrate that both VGG-16 and VGG-19 models proved more efficient, yielding an accuracy of approximately 86% and a f1-score of 87%, as compared to ResNet-50 and ResNet-101. ResNet-50 attains an accuracy and a f1-score of 46.9% and 45.6%, respectively, while ResNet-101 reaches an accuracy of 40.7% and a f1-score of 26.9%.","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning techniques for plant disease detection: an evaluation with a customized dataset\",\"authors\":\"Amatullah Fatwimah Humairaa Mahomodally, Geerish Suddul, S. Armoogum\",\"doi\":\"10.11591/ijict.v12i2.pp127-139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diseases in edible and industrial plants remains a major concern, affecting producers and consumers. The problem is further exacerbated as there are different species of plants with a wide variety of diseases that reduce the effectiveness of certain pesticides while increasing our risk of illness. A timely, accurate and automated detection of diseases can be beneficial. Our work focuses on evaluating deep learning (DL) approaches using transfer learning to automatically detect diseases in plants. To enhance the capabilities of our approach, we compiled a novel image dataset containing 87,570 records encompassing 32 different plants and 74 types of diseases. The dataset consists of leaf images from both laboratory setups and cultivation fields, making it more representative. To the best of our knowledge, no such datasets have been used for DL models. Four pre[1]trained computer vision models, namely VGG-16, VGG-19, ResNet-50, and ResNet-101 were evaluated on our dataset. Our experiments demonstrate that both VGG-16 and VGG-19 models proved more efficient, yielding an accuracy of approximately 86% and a f1-score of 87%, as compared to ResNet-50 and ResNet-101. ResNet-50 attains an accuracy and a f1-score of 46.9% and 45.6%, respectively, while ResNet-101 reaches an accuracy of 40.7% and a f1-score of 26.9%.\",\"PeriodicalId\":245958,\"journal\":{\"name\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijict.v12i2.pp127-139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijict.v12i2.pp127-139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

食用植物和工业植物中的疾病仍然是一个主要问题,影响着生产者和消费者。这一问题进一步恶化,因为不同种类的植物都有各种各样的疾病,这些疾病降低了某些杀虫剂的有效性,同时增加了我们患病的风险。及时、准确和自动化的疾病检测是有益的。我们的工作重点是评估使用迁移学习的深度学习(DL)方法来自动检测植物疾病。为了提高我们的方法的能力,我们编制了一个新的图像数据集,其中包含87,570条记录,包括32种不同的植物和74种疾病。该数据集包括来自实验室设置和种植田地的叶子图像,使其更具代表性。据我们所知,还没有这样的数据集被用于深度学习模型。在我们的数据集上评估了四个预[1]训练的计算机视觉模型,即VGG-16, VGG-19, ResNet-50和ResNet-101。我们的实验表明,与ResNet-50和ResNet-101相比,VGG-16和VGG-19模型都证明了更高的效率,产生了大约86%的准确率和87%的f1分数。ResNet-50的准确率为46.9%,f1-score为45.6%,ResNet-101的准确率为40.7%,f1-score为26.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning techniques for plant disease detection: an evaluation with a customized dataset
Diseases in edible and industrial plants remains a major concern, affecting producers and consumers. The problem is further exacerbated as there are different species of plants with a wide variety of diseases that reduce the effectiveness of certain pesticides while increasing our risk of illness. A timely, accurate and automated detection of diseases can be beneficial. Our work focuses on evaluating deep learning (DL) approaches using transfer learning to automatically detect diseases in plants. To enhance the capabilities of our approach, we compiled a novel image dataset containing 87,570 records encompassing 32 different plants and 74 types of diseases. The dataset consists of leaf images from both laboratory setups and cultivation fields, making it more representative. To the best of our knowledge, no such datasets have been used for DL models. Four pre[1]trained computer vision models, namely VGG-16, VGG-19, ResNet-50, and ResNet-101 were evaluated on our dataset. Our experiments demonstrate that both VGG-16 and VGG-19 models proved more efficient, yielding an accuracy of approximately 86% and a f1-score of 87%, as compared to ResNet-50 and ResNet-101. ResNet-50 attains an accuracy and a f1-score of 46.9% and 45.6%, respectively, while ResNet-101 reaches an accuracy of 40.7% and a f1-score of 26.9%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review-based analysis of clustering approaches in a recommendation system Adaptive resource allocation in NOMA-enabled backscatter communications systems Navigating the cyber forensics landscape a review of recent innovations ChatGPT's effect on the job market: how automation affects employment in sectors using ChatGPT for customer service Predicting anomalies in computer networks using autoencoder-based representation learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1