H. Farhang, M. Bardegar, A. Mohammad, H. Farahmandzad
{"title":"使用MAGIC PIC-FDTD代码优化x波段行波管","authors":"H. Farhang, M. Bardegar, A. Mohammad, H. Farahmandzad","doi":"10.1109/MSMW.2010.5546205","DOIUrl":null,"url":null,"abstract":"2D simulation model of helix TWT is developed by MAGIC Code. This model contains electron gun and helix Slow-Wave Structure (SWS). 3D magnetic simulation is done by means of CST EM Studio and the axial periodic magnetic field is imported into MAGIC 2D. Absorber coating profile is measured using reduced-height rectangular waveguide and subsequently bulk conductivity for each segment is calculated to develop accurate simulation model. Simulation results are found to be in good agreement with experiments. This model is used to optimize output power with minimum change in structure, while suppressing Backward Wave Oscillation (BWO). As increasing power may lead to exceed some thermal limitations, 3D MAGIC simulation is also performed to calculate power loss of each element. Total power loss, caused by surface current and particle impact energy, is calculated and compared with those obtained without optimization.","PeriodicalId":129834,"journal":{"name":"2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of an x-band TWT a using MAGIC PIC-FDTD code\",\"authors\":\"H. Farhang, M. Bardegar, A. Mohammad, H. Farahmandzad\",\"doi\":\"10.1109/MSMW.2010.5546205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2D simulation model of helix TWT is developed by MAGIC Code. This model contains electron gun and helix Slow-Wave Structure (SWS). 3D magnetic simulation is done by means of CST EM Studio and the axial periodic magnetic field is imported into MAGIC 2D. Absorber coating profile is measured using reduced-height rectangular waveguide and subsequently bulk conductivity for each segment is calculated to develop accurate simulation model. Simulation results are found to be in good agreement with experiments. This model is used to optimize output power with minimum change in structure, while suppressing Backward Wave Oscillation (BWO). As increasing power may lead to exceed some thermal limitations, 3D MAGIC simulation is also performed to calculate power loss of each element. Total power loss, caused by surface current and particle impact energy, is calculated and compared with those obtained without optimization.\",\"PeriodicalId\":129834,\"journal\":{\"name\":\"2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMW.2010.5546205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2010.5546205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
利用MAGIC程序建立螺旋行波管的二维仿真模型。该模型包含电子枪和螺旋慢波结构(SWS)。利用CST EM Studio进行三维磁场仿真,并将轴向周期磁场导入MAGIC 2D中。利用减高矩形波导测量了吸收层的分布,并计算了每一段的体电导率,从而建立了精确的仿真模型。仿真结果与实验结果吻合较好。该模型用于在结构变化最小的情况下优化输出功率,同时抑制反向波振荡(BWO)。由于功率增加可能会导致超出某些热限制,因此还进行了3D MAGIC模拟,以计算每个元件的功率损耗。计算了由表面电流和粒子冲击能引起的总功率损失,并与未优化的结果进行了比较。
Optimization of an x-band TWT a using MAGIC PIC-FDTD code
2D simulation model of helix TWT is developed by MAGIC Code. This model contains electron gun and helix Slow-Wave Structure (SWS). 3D magnetic simulation is done by means of CST EM Studio and the axial periodic magnetic field is imported into MAGIC 2D. Absorber coating profile is measured using reduced-height rectangular waveguide and subsequently bulk conductivity for each segment is calculated to develop accurate simulation model. Simulation results are found to be in good agreement with experiments. This model is used to optimize output power with minimum change in structure, while suppressing Backward Wave Oscillation (BWO). As increasing power may lead to exceed some thermal limitations, 3D MAGIC simulation is also performed to calculate power loss of each element. Total power loss, caused by surface current and particle impact energy, is calculated and compared with those obtained without optimization.