用可见光增强嘧啶衍生物对孟哥病毒的抗病毒活性。

E Tonew, L Kittler, G Hesse, W Schade
{"title":"用可见光增强嘧啶衍生物对孟哥病毒的抗病毒活性。","authors":"E Tonew,&nbsp;L Kittler,&nbsp;G Hesse,&nbsp;W Schade","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Eleven pyrimido-pyrimidine derivatives, seven with significant antiviral activity against Mengovirus, five against Coxsackie B1 virus and four antiviral negative compounds were tested for their photosensitizing ability. All seven compounds with antiviral activity in vitro showed an enhanced antiviral action against Mengovirus under irradiation with visible light, a fact that may be caused by photodynamic processes. It was tried to correlate the oxidation potentials of sensitizers with their photodynamic activity. By means of mass-spectrometric investigations, molecular fragmentation was examined following thin layer chromatography (TCL) before and after irradiation. Furthermore, binding affinity to biopolymers (BSA and RNA) was investigated to reveal conformity in differences of antiviral activity. The main results are the following: 1. Generally, strong antiviral activity can be correlated with strong binding affinity. 2. No significant correlation could be detected between oxidation potentials of antiviral compounds and their enhanced antiviral activity under irradiation conditions, although in some cases sensitizer with higher oxidation potentials are more effective than those with lower ones. 3. The lower the photostability of the compounds the higher was the light-induced antiviral activity. 4. No alteration of the molecular ion peak and fragmentation pattern before and after irradiation was indicated by means of mass-spectrometry and TLC using fairly comparable conditions.</p>","PeriodicalId":23838,"journal":{"name":"Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie","volume":"244 4","pages":"417-26"},"PeriodicalIF":0.0000,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of the antiviral activity of pyrimidine derivatives against mengovirus by visible light.\",\"authors\":\"E Tonew,&nbsp;L Kittler,&nbsp;G Hesse,&nbsp;W Schade\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eleven pyrimido-pyrimidine derivatives, seven with significant antiviral activity against Mengovirus, five against Coxsackie B1 virus and four antiviral negative compounds were tested for their photosensitizing ability. All seven compounds with antiviral activity in vitro showed an enhanced antiviral action against Mengovirus under irradiation with visible light, a fact that may be caused by photodynamic processes. It was tried to correlate the oxidation potentials of sensitizers with their photodynamic activity. By means of mass-spectrometric investigations, molecular fragmentation was examined following thin layer chromatography (TCL) before and after irradiation. Furthermore, binding affinity to biopolymers (BSA and RNA) was investigated to reveal conformity in differences of antiviral activity. The main results are the following: 1. Generally, strong antiviral activity can be correlated with strong binding affinity. 2. No significant correlation could be detected between oxidation potentials of antiviral compounds and their enhanced antiviral activity under irradiation conditions, although in some cases sensitizer with higher oxidation potentials are more effective than those with lower ones. 3. The lower the photostability of the compounds the higher was the light-induced antiviral activity. 4. No alteration of the molecular ion peak and fragmentation pattern before and after irradiation was indicated by means of mass-spectrometry and TLC using fairly comparable conditions.</p>\",\"PeriodicalId\":23838,\"journal\":{\"name\":\"Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie\",\"volume\":\"244 4\",\"pages\":\"417-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对11种嘧啶-嘧啶衍生物进行了光敏性测试,其中7种对孟戈病毒具有显著抗病毒活性,5种对柯萨奇B1病毒具有显著抗病毒活性,4种抗病毒阴性化合物具有光敏性。在可见光照射下,7种具有抗病毒活性的化合物对孟哥病毒的抗病毒作用增强,这可能是由光动力过程引起的。试图将感光剂的氧化电位与其光动力活性联系起来。通过质谱研究,用薄层色谱法(TCL)检测辐照前后的分子碎裂。此外,对生物聚合物(BSA和RNA)的结合亲和力进行了研究,以揭示不同抗病毒活性的一致性。主要研究结果如下:1。一般来说,强抗病毒活性可能与强结合亲和力相关。2. 在辐照条件下,抗病毒化合物的氧化电位与其增强的抗病毒活性之间没有显著的相关性,尽管在某些情况下,氧化电位较高的敏化剂比氧化电位较低的敏化剂更有效。3.化合物的光稳定性越低,其光致抗病毒活性越高。4. 质谱法和薄层色谱法在相当相似的条件下,辐照前后的分子离子峰和破碎模式没有变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement of the antiviral activity of pyrimidine derivatives against mengovirus by visible light.

Eleven pyrimido-pyrimidine derivatives, seven with significant antiviral activity against Mengovirus, five against Coxsackie B1 virus and four antiviral negative compounds were tested for their photosensitizing ability. All seven compounds with antiviral activity in vitro showed an enhanced antiviral action against Mengovirus under irradiation with visible light, a fact that may be caused by photodynamic processes. It was tried to correlate the oxidation potentials of sensitizers with their photodynamic activity. By means of mass-spectrometric investigations, molecular fragmentation was examined following thin layer chromatography (TCL) before and after irradiation. Furthermore, binding affinity to biopolymers (BSA and RNA) was investigated to reveal conformity in differences of antiviral activity. The main results are the following: 1. Generally, strong antiviral activity can be correlated with strong binding affinity. 2. No significant correlation could be detected between oxidation potentials of antiviral compounds and their enhanced antiviral activity under irradiation conditions, although in some cases sensitizer with higher oxidation potentials are more effective than those with lower ones. 3. The lower the photostability of the compounds the higher was the light-induced antiviral activity. 4. No alteration of the molecular ion peak and fragmentation pattern before and after irradiation was indicated by means of mass-spectrometry and TLC using fairly comparable conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antigenic variation in Klebsiella. Incompatibility of R plasmids from clinical material. Further characterization of "promptly" and "delayed" human serum-sensitive strains of Serratia marcescens. Studies on antibody levels to Brucella abortus, Toxoplasma gondii and Leptospira serogroups in sera collected by the National Serum Bank during 1974-1976. [Effect of bacterial infections and antibiotics on tsetse flies (Diptera, Glossinidae) (author's transl)].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1