生物医学植入处理器分支预测方案的评价

C. Strydis, G. Gaydadjiev
{"title":"生物医学植入处理器分支预测方案的评价","authors":"C. Strydis, G. Gaydadjiev","doi":"10.1109/ASAP.2009.37","DOIUrl":null,"url":null,"abstract":"This paper evaluates various branch-prediction schemes under different cache configurations in terms of performance, power, energy and area on suitably selected biomedical workloads. The benchmark suite used consists of compression, encryption and data-integrity algorithms as well as real implant applications, all executed on realistic biomedical input datasets. Results are used to drive the (micro)architectural design of a novel microprocessor targeting microelectronic implants. Our profiling study has revealed that, under strict or relaxed area constraints and regardless of cache size, the ALWAYS TAKEN and ALWAYS NOT-TAKEN static prediction schemes are, in almost all cases, the most suitable choices for the envisioned implant processor. It is further shown that bimodal predictors with small Branch-Target-Buffer (BTB) tables are suboptimal yet also attractive solutions when processor I/D-cache sizes are up to 1024KB/512KB, respectively.","PeriodicalId":202421,"journal":{"name":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evaluating Various Branch-Prediction Schemes for Biomedical-Implant Processors\",\"authors\":\"C. Strydis, G. Gaydadjiev\",\"doi\":\"10.1109/ASAP.2009.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates various branch-prediction schemes under different cache configurations in terms of performance, power, energy and area on suitably selected biomedical workloads. The benchmark suite used consists of compression, encryption and data-integrity algorithms as well as real implant applications, all executed on realistic biomedical input datasets. Results are used to drive the (micro)architectural design of a novel microprocessor targeting microelectronic implants. Our profiling study has revealed that, under strict or relaxed area constraints and regardless of cache size, the ALWAYS TAKEN and ALWAYS NOT-TAKEN static prediction schemes are, in almost all cases, the most suitable choices for the envisioned implant processor. It is further shown that bimodal predictors with small Branch-Target-Buffer (BTB) tables are suboptimal yet also attractive solutions when processor I/D-cache sizes are up to 1024KB/512KB, respectively.\",\"PeriodicalId\":202421,\"journal\":{\"name\":\"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2009.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2009.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文在适当选择的生物医学工作负载上,从性能、功耗、能量和面积等方面对不同缓存配置下的各种分支预测方案进行了评估。使用的基准套件包括压缩、加密和数据完整性算法以及真实的植入应用程序,所有这些都在真实的生物医学输入数据集上执行。结果用于驱动针对微电子植入物的新型微处理器的(微)架构设计。我们的分析研究表明,在严格或宽松的区域限制下,无论缓存大小如何,在几乎所有情况下,ALWAYS TAKEN和ALWAYS NOT-TAKEN静态预测方案都是所设想的植入处理器的最合适选择。进一步表明,当处理器I/ d缓存大小分别高达1024KB/512KB时,具有小分支-目标-缓冲区(BTB)表的双峰预测器是次优的,但也是有吸引力的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Various Branch-Prediction Schemes for Biomedical-Implant Processors
This paper evaluates various branch-prediction schemes under different cache configurations in terms of performance, power, energy and area on suitably selected biomedical workloads. The benchmark suite used consists of compression, encryption and data-integrity algorithms as well as real implant applications, all executed on realistic biomedical input datasets. Results are used to drive the (micro)architectural design of a novel microprocessor targeting microelectronic implants. Our profiling study has revealed that, under strict or relaxed area constraints and regardless of cache size, the ALWAYS TAKEN and ALWAYS NOT-TAKEN static prediction schemes are, in almost all cases, the most suitable choices for the envisioned implant processor. It is further shown that bimodal predictors with small Branch-Target-Buffer (BTB) tables are suboptimal yet also attractive solutions when processor I/D-cache sizes are up to 1024KB/512KB, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Implementation of Carry-Save Adders in FPGAs Evaluating Various Branch-Prediction Schemes for Biomedical-Implant Processors A Combined Decimal and Binary Floating-Point Multiplier Integral Parallel Architecture & Berkeley's Motifs NeMo: A Platform for Neural Modelling of Spiking Neurons Using GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1