触觉机器人绘制未知表面:在油井勘探中的应用

Francesco Mazzini, Daniel T. Kettler, S. Dubowsky, Julio Guerrero
{"title":"触觉机器人绘制未知表面:在油井勘探中的应用","authors":"Francesco Mazzini, Daniel T. Kettler, S. Dubowsky, Julio Guerrero","doi":"10.1109/ROSE.2009.5355990","DOIUrl":null,"url":null,"abstract":"World oil demand and advanced oil recovery techniques have made it economically attractive to rehabilitate previously abandoned oil wells. This requires relatively fast mapping of the shape and location of the down-hole well structures. Practical factors prohibit the use of visual and other range sensors in this situation. Here, the feasibility of robotic tactile mapping is studied. A method is developed that only uses the robot joint encoders and avoids any force or tactile sensor, which are complex and unreliable in such a hostile environment. This paper addresses the general problem of intelligent tactile exploration of constrained internal geometries where time is critical. It is assumed that the time required to move a manipulator to acquire a new touch point outweighs computational time. This approach models the down-hole structures with geometric primitives and focuses on exploration efficiency by intelligently searching for new touch points to build the geometric models. The algorithms developed here are shown in simulations and hardware experiments to substantially reduce the data acquisition effort for exploration with a tactile manipulator.","PeriodicalId":107220,"journal":{"name":"2009 IEEE International Workshop on Robotic and Sensors Environments","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Tactile robotic mapping of unknown surfaces: an application to oil well exploration\",\"authors\":\"Francesco Mazzini, Daniel T. Kettler, S. Dubowsky, Julio Guerrero\",\"doi\":\"10.1109/ROSE.2009.5355990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"World oil demand and advanced oil recovery techniques have made it economically attractive to rehabilitate previously abandoned oil wells. This requires relatively fast mapping of the shape and location of the down-hole well structures. Practical factors prohibit the use of visual and other range sensors in this situation. Here, the feasibility of robotic tactile mapping is studied. A method is developed that only uses the robot joint encoders and avoids any force or tactile sensor, which are complex and unreliable in such a hostile environment. This paper addresses the general problem of intelligent tactile exploration of constrained internal geometries where time is critical. It is assumed that the time required to move a manipulator to acquire a new touch point outweighs computational time. This approach models the down-hole structures with geometric primitives and focuses on exploration efficiency by intelligently searching for new touch points to build the geometric models. The algorithms developed here are shown in simulations and hardware experiments to substantially reduce the data acquisition effort for exploration with a tactile manipulator.\",\"PeriodicalId\":107220,\"journal\":{\"name\":\"2009 IEEE International Workshop on Robotic and Sensors Environments\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Workshop on Robotic and Sensors Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROSE.2009.5355990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Robotic and Sensors Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2009.5355990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

世界石油需求和先进的采油技术使得修复废弃油井具有经济上的吸引力。这需要相对快速地绘制井下井结构的形状和位置。实际因素禁止在这种情况下使用视觉和其他距离传感器。在此,研究了机器人触觉映射的可行性。开发了一种仅使用机器人关节编码器的方法,避免了在这种恶劣环境中复杂且不可靠的任何力或触觉传感器。本文解决了智能触觉探索受限内部几何形状的一般问题,其中时间是关键的。假定移动机械手获取新接触点所需的时间大于计算时间。该方法利用几何原语对井下结构进行建模,并通过智能搜索新的接触点来建立几何模型,以提高勘探效率。本文开发的算法在仿真和硬件实验中得到了证明,可以大大减少触觉机械手探索数据采集的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tactile robotic mapping of unknown surfaces: an application to oil well exploration
World oil demand and advanced oil recovery techniques have made it economically attractive to rehabilitate previously abandoned oil wells. This requires relatively fast mapping of the shape and location of the down-hole well structures. Practical factors prohibit the use of visual and other range sensors in this situation. Here, the feasibility of robotic tactile mapping is studied. A method is developed that only uses the robot joint encoders and avoids any force or tactile sensor, which are complex and unreliable in such a hostile environment. This paper addresses the general problem of intelligent tactile exploration of constrained internal geometries where time is critical. It is assumed that the time required to move a manipulator to acquire a new touch point outweighs computational time. This approach models the down-hole structures with geometric primitives and focuses on exploration efficiency by intelligently searching for new touch points to build the geometric models. The algorithms developed here are shown in simulations and hardware experiments to substantially reduce the data acquisition effort for exploration with a tactile manipulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A modified bootstrap filter Real-time 3D reconstruction for mobile robot using catadioptric cameras Large area smart tactile sensor for rescue robot Mobile robot self-localization system using IR-UWB sensor in indoor environments A high precision sensor system for indoor object positioning and monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1