用Vix数据估计和校正动态方差伽玛模型

L. Mercuri
{"title":"用Vix数据估计和校正动态方差伽玛模型","authors":"L. Mercuri","doi":"10.2139/ssrn.1695515","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate the ability of the Dynamic Variance Gamma model, recently proposed by Bellini and Mercuri (2010), to evaluate option prices on the S&P500 index. We also provide a simple relation between the Dynamic Variance Gamma model and the Vix index. We use this result to build a maximum likelihood estimation procedure and to calibrate the model on option data.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation and Calibration of a Dynamic Variance Gamma Model Using Vix Data\",\"authors\":\"L. Mercuri\",\"doi\":\"10.2139/ssrn.1695515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to investigate the ability of the Dynamic Variance Gamma model, recently proposed by Bellini and Mercuri (2010), to evaluate option prices on the S&P500 index. We also provide a simple relation between the Dynamic Variance Gamma model and the Vix index. We use this result to build a maximum likelihood estimation procedure and to calibrate the model on option data.\",\"PeriodicalId\":384078,\"journal\":{\"name\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1695515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1695515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是研究Bellini和Mercuri(2010)最近提出的动态方差Gamma模型评估标准普尔500指数期权价格的能力。我们还提供了动态方差伽玛模型和Vix指数之间的简单关系。我们利用这个结果建立了一个极大似然估计程序,并在期权数据上校准了模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation and Calibration of a Dynamic Variance Gamma Model Using Vix Data
The aim of this paper is to investigate the ability of the Dynamic Variance Gamma model, recently proposed by Bellini and Mercuri (2010), to evaluate option prices on the S&P500 index. We also provide a simple relation between the Dynamic Variance Gamma model and the Vix index. We use this result to build a maximum likelihood estimation procedure and to calibrate the model on option data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural Estimation Combining Micro and Macro Data Monetary Policy under Data Uncertainty: Interest-Rate Smoothing from a Cross-Country Perspective Nudging Towards Data Equity: The Role of Stewardship and Fiduciaries in the Digital Economy Re-Engineering Key National Economic Indicators Quant Research Ideas to Test for ETF Option and Equity Markets in China and Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1