精密行星距离跟踪雷达

R. Tausworthe
{"title":"精密行星距离跟踪雷达","authors":"R. Tausworthe","doi":"10.1109/TSET.1965.5009648","DOIUrl":null,"url":null,"abstract":"A closed-loop range-locked radar system developed by the Jet Propulsion Laboratory has recently had great success range tracking the planet Venus. It has provided measurements to the planetary mean-tracking point with peak minute-to-minute variations less than 2.25 to 3 Km in range. Over a one-hour tracking period, a mean tracking point can be determined to 0.5 km. A scattering-law calibration of the planet is made each day, measuring the mean-tracking-point-to-planetary-surface distance to within 3 km (nominal). The subearth point-to-radar distance is thus measured to a nominal accuracy of 3.5 km. Tracking behaves as a first-order linear ``range-locked'' loop with ephemeris aid, and is practically calibration free. Data obtained during the 1964 conjunction showed that the ephemeris not only contained a range error, but also a range-rate error of 18 km per day. Deviations from this rate correspond to surface features whose height can be estimated. Such data will be invaluable in determining, to a greater degree of accuracy than ever before attainable, the orbital constants of the earth and Venus.","PeriodicalId":153922,"journal":{"name":"IEEE Transactions on Space Electronics and Telemetry","volume":"274 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1965-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Precision Planetary Range-Tracking Radar\",\"authors\":\"R. Tausworthe\",\"doi\":\"10.1109/TSET.1965.5009648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A closed-loop range-locked radar system developed by the Jet Propulsion Laboratory has recently had great success range tracking the planet Venus. It has provided measurements to the planetary mean-tracking point with peak minute-to-minute variations less than 2.25 to 3 Km in range. Over a one-hour tracking period, a mean tracking point can be determined to 0.5 km. A scattering-law calibration of the planet is made each day, measuring the mean-tracking-point-to-planetary-surface distance to within 3 km (nominal). The subearth point-to-radar distance is thus measured to a nominal accuracy of 3.5 km. Tracking behaves as a first-order linear ``range-locked'' loop with ephemeris aid, and is practically calibration free. Data obtained during the 1964 conjunction showed that the ephemeris not only contained a range error, but also a range-rate error of 18 km per day. Deviations from this rate correspond to surface features whose height can be estimated. Such data will be invaluable in determining, to a greater degree of accuracy than ever before attainable, the orbital constants of the earth and Venus.\",\"PeriodicalId\":153922,\"journal\":{\"name\":\"IEEE Transactions on Space Electronics and Telemetry\",\"volume\":\"274 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Space Electronics and Telemetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSET.1965.5009648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Space Electronics and Telemetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSET.1965.5009648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

喷气推进实验室开发的一种闭环距离锁定雷达系统最近在距离跟踪金星方面取得了巨大成功。它提供了对行星平均跟踪点的测量,其峰值每分钟的变化范围小于2.25至3公里。在一个小时的跟踪周期内,平均跟踪点可以确定为0.5公里。每天对行星进行散射定律校准,测量平均跟踪点到行星表面的距离在3公里以内(标称)。因此,地下点到雷达的距离被测量到标称精度为3.5公里。在星历辅助下,跟踪表现为一阶线性“距离锁定”环路,并且实际上无需校准。1964年日全食期间获得的数据表明,星历表不仅有距离误差,而且距离速率误差为每天18公里。与此速率的偏差对应于其高度可以估计的地表特征。这些数据对于确定地球和金星的轨道常数将是非常宝贵的,而且比以往任何时候都更加精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Precision Planetary Range-Tracking Radar
A closed-loop range-locked radar system developed by the Jet Propulsion Laboratory has recently had great success range tracking the planet Venus. It has provided measurements to the planetary mean-tracking point with peak minute-to-minute variations less than 2.25 to 3 Km in range. Over a one-hour tracking period, a mean tracking point can be determined to 0.5 km. A scattering-law calibration of the planet is made each day, measuring the mean-tracking-point-to-planetary-surface distance to within 3 km (nominal). The subearth point-to-radar distance is thus measured to a nominal accuracy of 3.5 km. Tracking behaves as a first-order linear ``range-locked'' loop with ephemeris aid, and is practically calibration free. Data obtained during the 1964 conjunction showed that the ephemeris not only contained a range error, but also a range-rate error of 18 km per day. Deviations from this rate correspond to surface features whose height can be estimated. Such data will be invaluable in determining, to a greater degree of accuracy than ever before attainable, the orbital constants of the earth and Venus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Precision Planetary Range-Tracking Radar Optimum Filters for Second- and Third-Order Phase-Locked Loops by an Error-Function Criterion Power Spectrum of PAM/FM and PAM/PM Power Spectrum of a Random PCM-FM Wave Unambiguous Accuracy of an Interferometer Angle-Measuring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1