克服在图形处理器上使用ILUPACK的内存容量限制

J. Aliaga, Ernesto Dufrechu, P. Ezzatti, E. S. Quintana‐Ortí
{"title":"克服在图形处理器上使用ILUPACK的内存容量限制","authors":"J. Aliaga, Ernesto Dufrechu, P. Ezzatti, E. S. Quintana‐Ortí","doi":"10.1109/SBAC-PAD.2017.13","DOIUrl":null,"url":null,"abstract":"An important number of scientific and engineering problems currently require the solution of large and sparse linear systems of equations. In previous work, we applied a GPU accelerator to the solution of sparse linear systems of moderate dimension via ILUPACK, showing important reductions in the execution time while maintaining the quality of the solution. Unfortunately, the use of GPUs attached to only one compute node strongly limits the memory available to solve the systems, and thus the size of the problems that can be tackled with this approach.In this work we introduce a distributed–parallel version of ILUPACK that overcomes these limitations. The results of the evaluation show that the inclusion of multiple GPUs, located on distinct nodes of a cluster, yields relevant reductions in the execution time for large problems and, more importantly, allows to increase the dimension of the problems, showing interesting scaling properties.","PeriodicalId":187204,"journal":{"name":"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming Memory-Capacity Constraints in the Use of ILUPACK on Graphics Processors\",\"authors\":\"J. Aliaga, Ernesto Dufrechu, P. Ezzatti, E. S. Quintana‐Ortí\",\"doi\":\"10.1109/SBAC-PAD.2017.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important number of scientific and engineering problems currently require the solution of large and sparse linear systems of equations. In previous work, we applied a GPU accelerator to the solution of sparse linear systems of moderate dimension via ILUPACK, showing important reductions in the execution time while maintaining the quality of the solution. Unfortunately, the use of GPUs attached to only one compute node strongly limits the memory available to solve the systems, and thus the size of the problems that can be tackled with this approach.In this work we introduce a distributed–parallel version of ILUPACK that overcomes these limitations. The results of the evaluation show that the inclusion of multiple GPUs, located on distinct nodes of a cluster, yields relevant reductions in the execution time for large problems and, more importantly, allows to increase the dimension of the problems, showing interesting scaling properties.\",\"PeriodicalId\":187204,\"journal\":{\"name\":\"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD.2017.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2017.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,许多重要的科学和工程问题都需要求解大型稀疏线性方程组。在之前的工作中,我们通过ILUPACK将GPU加速器应用于中等维数的稀疏线性系统的求解,在保持解决方案质量的同时显着减少了执行时间。不幸的是,使用仅连接到一个计算节点的gpu严重限制了用于解决系统的可用内存,从而限制了使用这种方法可以解决的问题的大小。在这项工作中,我们介绍了一个分布式–并行版本的ILUPACK,克服了这些限制。评估的结果表明,包含多个gpu,位于集群的不同节点上,可以减少大型问题的执行时间,更重要的是,可以增加问题的维度,显示出有趣的缩放特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overcoming Memory-Capacity Constraints in the Use of ILUPACK on Graphics Processors
An important number of scientific and engineering problems currently require the solution of large and sparse linear systems of equations. In previous work, we applied a GPU accelerator to the solution of sparse linear systems of moderate dimension via ILUPACK, showing important reductions in the execution time while maintaining the quality of the solution. Unfortunately, the use of GPUs attached to only one compute node strongly limits the memory available to solve the systems, and thus the size of the problems that can be tackled with this approach.In this work we introduce a distributed–parallel version of ILUPACK that overcomes these limitations. The results of the evaluation show that the inclusion of multiple GPUs, located on distinct nodes of a cluster, yields relevant reductions in the execution time for large problems and, more importantly, allows to increase the dimension of the problems, showing interesting scaling properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource-Management Study in HPC Runtime-Stacking Context Cloud Workload Prediction and Generation Models GC-CR: A Decentralized Garbage Collector Component for Checkpointing in Clouds Overcoming Memory-Capacity Constraints in the Use of ILUPACK on Graphics Processors Beyond the Fog: Bringing Cross-Platform Code Execution to Constrained IoT Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1