随机生产函数的估计:最新进展

Manyeki John Kibara, Balázs Kotosz
{"title":"随机生产函数的估计:最新进展","authors":"Manyeki John Kibara, Balázs Kotosz","doi":"10.35618/hsr2019.01.en057","DOIUrl":null,"url":null,"abstract":"E-mail: balazskotosz@gmail.com This article presents a comprehensive review of frontier studies for productivity analysis. The authors discuss the two main frontier approaches and highlight the reasons for selecting the parametric approach. The review also identifies the reason for considering unobserved heterogeneity when estimating firm performance. The classical stochastic frontier model is found to suffer from an empirical artefact in which the residuals of the production function may have positive skewness, contrary to the expected negative skewness which leads to estimated full efficiencies of all firms, as well as the possible problem of collinearity among inputs in the stochastic frontier model. By relaxing the hypotheses of random error symmetry and the independence of the components of the composite error, a sufficiently flexible re-specification of the stochastic frontier model can be achieved by decomposing the third moment of the composite error into three components that include the asymmetry of the inefficiency term, the asymmetry of the random error, and the dependence structure of the error components. Finally, instead of excluding insignificant variables from the model that can be of policy relevance, a principalcomponents-based solution can be adopted for collinearity in a stochastic frontier model.","PeriodicalId":119089,"journal":{"name":"Hungarian Statistical Review","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimation of stochastic production functions: the state of the art\",\"authors\":\"Manyeki John Kibara, Balázs Kotosz\",\"doi\":\"10.35618/hsr2019.01.en057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E-mail: balazskotosz@gmail.com This article presents a comprehensive review of frontier studies for productivity analysis. The authors discuss the two main frontier approaches and highlight the reasons for selecting the parametric approach. The review also identifies the reason for considering unobserved heterogeneity when estimating firm performance. The classical stochastic frontier model is found to suffer from an empirical artefact in which the residuals of the production function may have positive skewness, contrary to the expected negative skewness which leads to estimated full efficiencies of all firms, as well as the possible problem of collinearity among inputs in the stochastic frontier model. By relaxing the hypotheses of random error symmetry and the independence of the components of the composite error, a sufficiently flexible re-specification of the stochastic frontier model can be achieved by decomposing the third moment of the composite error into three components that include the asymmetry of the inefficiency term, the asymmetry of the random error, and the dependence structure of the error components. Finally, instead of excluding insignificant variables from the model that can be of policy relevance, a principalcomponents-based solution can be adopted for collinearity in a stochastic frontier model.\",\"PeriodicalId\":119089,\"journal\":{\"name\":\"Hungarian Statistical Review\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hungarian Statistical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35618/hsr2019.01.en057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Statistical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35618/hsr2019.01.en057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

E-mail: balazskotosz@gmail.com这篇文章对生产力分析的前沿研究进行了全面的回顾。作者讨论了两种主要的前沿方法,并强调了选择参数方法的原因。本综述还确定了在估计企业绩效时考虑未观察到的异质性的原因。经典的随机前沿模型被发现存在经验伪象,其中生产函数的残差可能具有正偏度,与预期的负偏度相反,这导致估计所有公司的全部效率,以及随机前沿模型中输入之间可能存在共线性问题。通过放宽随机误差对称性和复合误差分量独立性的假设,将复合误差的第三阶矩分解为三个分量,包括无效项的不对称性、随机误差的不对称性和误差分量的依赖结构,可以实现足够灵活的随机前沿模型再规范。最后,对于随机前沿模型中的共线性,可以采用基于主成分的解决方案,而不是从模型中排除可能与政策相关的无关变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of stochastic production functions: the state of the art
E-mail: balazskotosz@gmail.com This article presents a comprehensive review of frontier studies for productivity analysis. The authors discuss the two main frontier approaches and highlight the reasons for selecting the parametric approach. The review also identifies the reason for considering unobserved heterogeneity when estimating firm performance. The classical stochastic frontier model is found to suffer from an empirical artefact in which the residuals of the production function may have positive skewness, contrary to the expected negative skewness which leads to estimated full efficiencies of all firms, as well as the possible problem of collinearity among inputs in the stochastic frontier model. By relaxing the hypotheses of random error symmetry and the independence of the components of the composite error, a sufficiently flexible re-specification of the stochastic frontier model can be achieved by decomposing the third moment of the composite error into three components that include the asymmetry of the inefficiency term, the asymmetry of the random error, and the dependence structure of the error components. Finally, instead of excluding insignificant variables from the model that can be of policy relevance, a principalcomponents-based solution can be adopted for collinearity in a stochastic frontier model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hungarians working abroad, non-residents working in Hungary (Difficulties in the statistical enumeration) Mapping improvement options of government services: illustration of ‘concept-mapping’ Estimation of stochastic production functions: the state of the art A zero-truncated discrete Akash distribution with properties and applications Quantile regression and an application: performance improvement of an emergency department in Eastern Europe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1