利用12导联心电图判别心房扑动机制的半监督学习与监督学习

G. Luongo, S. Schuler, M. Rivolta, O. Dössel, R. Sassi, A. Loewe
{"title":"利用12导联心电图判别心房扑动机制的半监督学习与监督学习","authors":"G. Luongo, S. Schuler, M. Rivolta, O. Dössel, R. Sassi, A. Loewe","doi":"10.23919/cinc53138.2021.9662849","DOIUrl":null,"url":null,"abstract":"Atrial flutter (AFl) is a common heart rhythm disorder driven by different self-sustaining electrophysiological atrial mechanisms. In this work, we tried to automatically distinguish the macro-mechanism sustaining the arrhythmia in an individual patient using the non-invasive 12-lead electrocardiogram (ECG). We implemented a concurrent clustering and classification algorithm (CCC) to discriminate the clinical classes and look for potential similarities between patient features in each class, thus suggesting that these patients would require a similar treatment. The CCC performance was then compared to a standard supervised technique (K-nearest neighbor, KNN). 3-class classification (macro-reentry right atrium, macro-reentry left atrium, and others) achieved 48.3% and 72.0% CCC and KNN accuracy, respectively. 4-class classification (tri-cuspidal reentry, mitral reentry, fig-8 macro-reentry, and others) achieved 41.6% and 71.2% CCC and KNN accuracy, respectively. Our results show that a clustering approach does not improve the performance of AFl classification because the semi-supervised method leads to clusters that are strongly overlapping between the different ground truth classes. In contrast, the supervised learning approach shows potential for the classification, although constrained by the complexity and the multiple variables that influence the underlying mechanisms.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG\",\"authors\":\"G. Luongo, S. Schuler, M. Rivolta, O. Dössel, R. Sassi, A. Loewe\",\"doi\":\"10.23919/cinc53138.2021.9662849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial flutter (AFl) is a common heart rhythm disorder driven by different self-sustaining electrophysiological atrial mechanisms. In this work, we tried to automatically distinguish the macro-mechanism sustaining the arrhythmia in an individual patient using the non-invasive 12-lead electrocardiogram (ECG). We implemented a concurrent clustering and classification algorithm (CCC) to discriminate the clinical classes and look for potential similarities between patient features in each class, thus suggesting that these patients would require a similar treatment. The CCC performance was then compared to a standard supervised technique (K-nearest neighbor, KNN). 3-class classification (macro-reentry right atrium, macro-reentry left atrium, and others) achieved 48.3% and 72.0% CCC and KNN accuracy, respectively. 4-class classification (tri-cuspidal reentry, mitral reentry, fig-8 macro-reentry, and others) achieved 41.6% and 71.2% CCC and KNN accuracy, respectively. Our results show that a clustering approach does not improve the performance of AFl classification because the semi-supervised method leads to clusters that are strongly overlapping between the different ground truth classes. In contrast, the supervised learning approach shows potential for the classification, although constrained by the complexity and the multiple variables that influence the underlying mechanisms.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心房扑动(AFl)是一种常见的心律失常,由不同的自持心房电生理机制驱动。在这项工作中,我们试图使用无创12导联心电图(ECG)自动区分个体患者维持心律失常的宏观机制。我们实施了并发聚类和分类算法(CCC)来区分临床类别,并寻找每个类别中患者特征之间的潜在相似性,从而表明这些患者需要类似的治疗。然后将CCC性能与标准监督技术(k -最近邻,KNN)进行比较。3类分类(宏观再入右心房、宏观再入左心房等)分别达到48.3%和72.0%的CCC和KNN准确率。4类分类(三尖瓣再入、二尖瓣再入、图8宏观再入等)分别达到41.6%和71.2%的CCC和KNN准确率。我们的研究结果表明,聚类方法并不能提高AFl分类的性能,因为半监督方法导致聚类在不同的基础真值类之间强烈重叠。相比之下,监督学习方法显示了分类的潜力,尽管受到影响潜在机制的复杂性和多个变量的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
Atrial flutter (AFl) is a common heart rhythm disorder driven by different self-sustaining electrophysiological atrial mechanisms. In this work, we tried to automatically distinguish the macro-mechanism sustaining the arrhythmia in an individual patient using the non-invasive 12-lead electrocardiogram (ECG). We implemented a concurrent clustering and classification algorithm (CCC) to discriminate the clinical classes and look for potential similarities between patient features in each class, thus suggesting that these patients would require a similar treatment. The CCC performance was then compared to a standard supervised technique (K-nearest neighbor, KNN). 3-class classification (macro-reentry right atrium, macro-reentry left atrium, and others) achieved 48.3% and 72.0% CCC and KNN accuracy, respectively. 4-class classification (tri-cuspidal reentry, mitral reentry, fig-8 macro-reentry, and others) achieved 41.6% and 71.2% CCC and KNN accuracy, respectively. Our results show that a clustering approach does not improve the performance of AFl classification because the semi-supervised method leads to clusters that are strongly overlapping between the different ground truth classes. In contrast, the supervised learning approach shows potential for the classification, although constrained by the complexity and the multiple variables that influence the underlying mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1