基于小波主成分分析的城市交通数据压缩方法

Jun Ding, Zuo Zhang, Xiao Ma
{"title":"基于小波主成分分析的城市交通数据压缩方法","authors":"Jun Ding, Zuo Zhang, Xiao Ma","doi":"10.1109/CSO.2011.36","DOIUrl":null,"url":null,"abstract":"Due to limitation of storage space and cost, the massive amount of urban detected traffic data becomes a great burden. How to efficiently reduce these data and store them becomes more and more urgent. In this paper, an effective method for urban traffic data compression based on Wavelet-PCA is proposed. After preprocessing, the dataset is decomposed using wavelet and then multi-scale PCA is applied to reduce them to different dimensions. Simulation results prove that this method can greatly compress original data at the cost of acceptable recovery error and outperforms conventional PCA. Finally, we develop a prototype system specifically for urban traffic data compression using Visual C#.NET and Matlab.","PeriodicalId":210815,"journal":{"name":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Method for Urban Traffic Data Compression Based on Wavelet-PCA\",\"authors\":\"Jun Ding, Zuo Zhang, Xiao Ma\",\"doi\":\"10.1109/CSO.2011.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to limitation of storage space and cost, the massive amount of urban detected traffic data becomes a great burden. How to efficiently reduce these data and store them becomes more and more urgent. In this paper, an effective method for urban traffic data compression based on Wavelet-PCA is proposed. After preprocessing, the dataset is decomposed using wavelet and then multi-scale PCA is applied to reduce them to different dimensions. Simulation results prove that this method can greatly compress original data at the cost of acceptable recovery error and outperforms conventional PCA. Finally, we develop a prototype system specifically for urban traffic data compression using Visual C#.NET and Matlab.\",\"PeriodicalId\":210815,\"journal\":{\"name\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2011.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

由于存储空间和成本的限制,海量的城市检测交通数据成为极大的负担。如何有效地减少和存储这些数据变得越来越紧迫。提出了一种基于小波主成分分析的城市交通数据压缩方法。预处理后,对数据集进行小波分解,然后利用多尺度主成分分析将数据降维。仿真结果表明,该方法可以在可接受的恢复误差范围内大幅度压缩原始数据,优于传统的主成分分析法。最后,利用Visual c#开发了一个专门用于城市交通数据压缩的原型系统。. NET和Matlab。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method for Urban Traffic Data Compression Based on Wavelet-PCA
Due to limitation of storage space and cost, the massive amount of urban detected traffic data becomes a great burden. How to efficiently reduce these data and store them becomes more and more urgent. In this paper, an effective method for urban traffic data compression based on Wavelet-PCA is proposed. After preprocessing, the dataset is decomposed using wavelet and then multi-scale PCA is applied to reduce them to different dimensions. Simulation results prove that this method can greatly compress original data at the cost of acceptable recovery error and outperforms conventional PCA. Finally, we develop a prototype system specifically for urban traffic data compression using Visual C#.NET and Matlab.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Inverse Eigenvalue Problem for a Special Kind of Matrices A Nonlinear Artificial Intelligence Ensemble Prediction Model Based on EOF for Typhoon Track Product Review Information Extraction Based on Adjective Opinion Words The Design and Implement of Meteorological Service Benefit Assessment for Huaihe River Basin with GIS Technology The Effects of Interest Rate Regulation on Real Estate Prices in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1