图像引导骨科手术中2D x线片患者特异性骨模型的3D重建

P. Gamage, S. Xie, P. Delmas, P. Xu
{"title":"图像引导骨科手术中2D x线片患者特异性骨模型的3D重建","authors":"P. Gamage, S. Xie, P. Delmas, P. Xu","doi":"10.1109/DICTA.2009.42","DOIUrl":null,"url":null,"abstract":"Three dimensional (3D) visualization of anatomy plays an important role in image guided orthopedic surgery and ultimately motivates minimally invasive procedures. However, direct 3D imaging modalities such as Computed Tomography (CT) are restricted to a minority of complex orthopedic procedures. Thus the diagnostics and planning of many interventions still rely on two dimensional (2D) radiographic images, where the surgeon has to mentally visualize the anatomy of interest. The purpose of this paper is to apply and validate a bi-planar 3D reconstruction methodology driven by prominent bony anatomy edges and contours identified on orthogonal radiographs. The results obtained through the proposed methodology are benchmarked against 3D CT scan data to assess the accuracy of reconstruction. The human femur has been used as the anatomy of interest throughout the paper. The novelty of this methodology is that it not only involves the outer contours of the bony anatomy in the reconstruction but also several key interior edges identifiable on radiographic images. Hence, this framework is not simply limited to long bones, but is generally applicable to a multitude of other bony anatomies as illustrated in the results section.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery\",\"authors\":\"P. Gamage, S. Xie, P. Delmas, P. Xu\",\"doi\":\"10.1109/DICTA.2009.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three dimensional (3D) visualization of anatomy plays an important role in image guided orthopedic surgery and ultimately motivates minimally invasive procedures. However, direct 3D imaging modalities such as Computed Tomography (CT) are restricted to a minority of complex orthopedic procedures. Thus the diagnostics and planning of many interventions still rely on two dimensional (2D) radiographic images, where the surgeon has to mentally visualize the anatomy of interest. The purpose of this paper is to apply and validate a bi-planar 3D reconstruction methodology driven by prominent bony anatomy edges and contours identified on orthogonal radiographs. The results obtained through the proposed methodology are benchmarked against 3D CT scan data to assess the accuracy of reconstruction. The human femur has been used as the anatomy of interest throughout the paper. The novelty of this methodology is that it not only involves the outer contours of the bony anatomy in the reconstruction but also several key interior edges identifiable on radiographic images. Hence, this framework is not simply limited to long bones, but is generally applicable to a multitude of other bony anatomies as illustrated in the results section.\",\"PeriodicalId\":277395,\"journal\":{\"name\":\"2009 Digital Image Computing: Techniques and Applications\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2009.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

三维解剖可视化在图像引导骨科手术中起着重要作用,并最终推动微创手术的发展。然而,直接的三维成像模式,如计算机断层扫描(CT)仅限于少数复杂的骨科手术。因此,许多干预的诊断和计划仍然依赖于二维(2D)放射图像,外科医生必须在心理上可视化感兴趣的解剖结构。本文的目的是应用和验证一种双平面三维重建方法,该方法由正交x线片上识别的突出骨骼解剖边缘和轮廓驱动。通过所提出的方法获得的结果与3D CT扫描数据进行基准测试,以评估重建的准确性。人类股骨一直被用作整个论文感兴趣的解剖结构。这种方法的新颖之处在于,它不仅涉及重建骨骼解剖的外部轮廓,而且还涉及在放射图像上可识别的几个关键的内部边缘。因此,这个框架不仅限于长骨,而且通常适用于结果部分所示的许多其他骨骼解剖结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery
Three dimensional (3D) visualization of anatomy plays an important role in image guided orthopedic surgery and ultimately motivates minimally invasive procedures. However, direct 3D imaging modalities such as Computed Tomography (CT) are restricted to a minority of complex orthopedic procedures. Thus the diagnostics and planning of many interventions still rely on two dimensional (2D) radiographic images, where the surgeon has to mentally visualize the anatomy of interest. The purpose of this paper is to apply and validate a bi-planar 3D reconstruction methodology driven by prominent bony anatomy edges and contours identified on orthogonal radiographs. The results obtained through the proposed methodology are benchmarked against 3D CT scan data to assess the accuracy of reconstruction. The human femur has been used as the anatomy of interest throughout the paper. The novelty of this methodology is that it not only involves the outer contours of the bony anatomy in the reconstruction but also several key interior edges identifiable on radiographic images. Hence, this framework is not simply limited to long bones, but is generally applicable to a multitude of other bony anatomies as illustrated in the results section.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Surveillance: Legally Blind? Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine 3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery Improved Single Image Dehazing Using Geometry Crowd Counting Using Multiple Local Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1