在大规模分布式存储计算机上求解稀疏最小二乘问题

L. Yang
{"title":"在大规模分布式存储计算机上求解稀疏最小二乘问题","authors":"L. Yang","doi":"10.1109/APDC.1997.574029","DOIUrl":null,"url":null,"abstract":"In this paper we study the parallel aspects of PCGLS, a basic iterative method whose main idea is to organize the computation of conjugate gradient method with preconditioner applied to normal equations, and incomplete modified Gram-Schmidt (IMGS) preconditioner for solving sparse least squares problems on massively parallel distributed memory computers. The performance of these methods on this kind of architecture is always limited because of the global communication required for the inner products. We describe the parallelization of PCGLS and IMGS preconditioner by two ways of improvement. One is to assemble the results of a number of inner products collectively and the other is to create situations when communication can be overlapped with computation. A theoretical model of computation and communication phases is presented which allows us to decide the number of processors that minimizes the runtime. Several numerical experiments on Parsytec GC/PowerPlus are presented.","PeriodicalId":413925,"journal":{"name":"Proceedings. Advances in Parallel and Distributed Computing","volume":"11651 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Solving sparse least squares problems on massively distributed memory computers\",\"authors\":\"L. Yang\",\"doi\":\"10.1109/APDC.1997.574029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the parallel aspects of PCGLS, a basic iterative method whose main idea is to organize the computation of conjugate gradient method with preconditioner applied to normal equations, and incomplete modified Gram-Schmidt (IMGS) preconditioner for solving sparse least squares problems on massively parallel distributed memory computers. The performance of these methods on this kind of architecture is always limited because of the global communication required for the inner products. We describe the parallelization of PCGLS and IMGS preconditioner by two ways of improvement. One is to assemble the results of a number of inner products collectively and the other is to create situations when communication can be overlapped with computation. A theoretical model of computation and communication phases is presented which allows us to decide the number of processors that minimizes the runtime. Several numerical experiments on Parsytec GC/PowerPlus are presented.\",\"PeriodicalId\":413925,\"journal\":{\"name\":\"Proceedings. Advances in Parallel and Distributed Computing\",\"volume\":\"11651 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Advances in Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APDC.1997.574029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Advances in Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APDC.1997.574029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文研究了PCGLS的并行性。PCGLS是一种基本的迭代方法,其主要思想是组织共轭梯度法的计算,共轭梯度法的预条件应用于正态方程,不完全修正Gram-Schmidt (IMGS)预条件用于求解大规模并行分布式存储计算机上的稀疏最小二乘问题。由于内部产品需要全局通信,这些方法在这种体系结构上的性能总是受到限制。通过两种改进方法描述了PCGLS和IMGS预调节器的并行化。一种是将许多内部产品的结果集合在一起,另一种是创造通信可以与计算重叠的情况。提出了一个计算和通信阶段的理论模型,该模型允许我们决定最小化运行时间的处理器数量。介绍了在Parsytec GC/PowerPlus上进行的几个数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving sparse least squares problems on massively distributed memory computers
In this paper we study the parallel aspects of PCGLS, a basic iterative method whose main idea is to organize the computation of conjugate gradient method with preconditioner applied to normal equations, and incomplete modified Gram-Schmidt (IMGS) preconditioner for solving sparse least squares problems on massively parallel distributed memory computers. The performance of these methods on this kind of architecture is always limited because of the global communication required for the inner products. We describe the parallelization of PCGLS and IMGS preconditioner by two ways of improvement. One is to assemble the results of a number of inner products collectively and the other is to create situations when communication can be overlapped with computation. A theoretical model of computation and communication phases is presented which allows us to decide the number of processors that minimizes the runtime. Several numerical experiments on Parsytec GC/PowerPlus are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On distributed snapshot algorithms Solving sparse least squares problems on massively distributed memory computers A lifetime-sensitive scheduling method Parallel recursive algorithm for tridiagonal systems Automatic generation of parallel compiler-partial evaluation of parallel lambda language
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1