基于QoS特性的互联网视频流分类

Zaijian Wang, Yu-ning Dong, Hai-xian Shi, Lingyun Yang, Pingping Tang
{"title":"基于QoS特性的互联网视频流分类","authors":"Zaijian Wang, Yu-ning Dong, Hai-xian Shi, Lingyun Yang, Pingping Tang","doi":"10.1109/ICCNC.2016.7440599","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of effective classification of video traffic with the view of QoS guarantee, and presents a modified K-Singular Value Decomposition (K-SVD) classification framework based on the concept of QFAg (QoS based Flow Aggregation). By statistical analysis of video flows on large-scale real networks, we define 5 Quality of Service (QoS) categories with the features of downstream/upstream rates. To investigate the sparsity property of multimedia QoS feature, this paper utilizes modified K-SVD to train dictionary extracted from training samples. By learning feature-set to obtain sparse representation for video traffic, we propose a feature-based method to classify video traffic. Experimental results reveal that the proposed method can improve the classification performance significantly compared to previous methods.","PeriodicalId":308458,"journal":{"name":"2016 International Conference on Computing, Networking and Communications (ICNC)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Internet video traffic classification using QoS features\",\"authors\":\"Zaijian Wang, Yu-ning Dong, Hai-xian Shi, Lingyun Yang, Pingping Tang\",\"doi\":\"10.1109/ICCNC.2016.7440599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the issue of effective classification of video traffic with the view of QoS guarantee, and presents a modified K-Singular Value Decomposition (K-SVD) classification framework based on the concept of QFAg (QoS based Flow Aggregation). By statistical analysis of video flows on large-scale real networks, we define 5 Quality of Service (QoS) categories with the features of downstream/upstream rates. To investigate the sparsity property of multimedia QoS feature, this paper utilizes modified K-SVD to train dictionary extracted from training samples. By learning feature-set to obtain sparse representation for video traffic, we propose a feature-based method to classify video traffic. Experimental results reveal that the proposed method can improve the classification performance significantly compared to previous methods.\",\"PeriodicalId\":308458,\"journal\":{\"name\":\"2016 International Conference on Computing, Networking and Communications (ICNC)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Computing, Networking and Communications (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCNC.2016.7440599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2016.7440599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

从QoS保证的角度研究视频流量的有效分类问题,提出了一种基于QoS的流量聚合(QFAg)概念的改进k -奇异值分解(K-SVD)分类框架。通过对大规模真实网络视频流的统计分析,我们定义了5种具有下游/上游速率特征的服务质量(QoS)类别。为了研究多媒体QoS特征的稀疏性,本文利用改进的K-SVD对训练样本提取的字典进行训练。通过学习特征集获得视频流量的稀疏表示,提出了一种基于特征的视频流量分类方法。实验结果表明,与已有的分类方法相比,该方法能显著提高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Internet video traffic classification using QoS features
This paper addresses the issue of effective classification of video traffic with the view of QoS guarantee, and presents a modified K-Singular Value Decomposition (K-SVD) classification framework based on the concept of QFAg (QoS based Flow Aggregation). By statistical analysis of video flows on large-scale real networks, we define 5 Quality of Service (QoS) categories with the features of downstream/upstream rates. To investigate the sparsity property of multimedia QoS feature, this paper utilizes modified K-SVD to train dictionary extracted from training samples. By learning feature-set to obtain sparse representation for video traffic, we propose a feature-based method to classify video traffic. Experimental results reveal that the proposed method can improve the classification performance significantly compared to previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Public scene recognition using mobile phone sensors Mixed signal detection and carrier frequency estimation based on spectral coherent features A queue-length based distributed scheduling for CSMA-driven Wireless Mesh Networks GreenTCAM: A memory- and energy-efficient TCAM-based packet classification Hierarchical traffic engineering based on model predictive control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1