{"title":"截线、对偶性和不合理旋转","authors":"Anna Duwenig, Heath Emerson","doi":"10.1090/btran/54","DOIUrl":null,"url":null,"abstract":"<p>An early result of Noncommutative Geometry was Connes’ observation in the 1980’s that the Dirac-Dolbeault cycle for the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-torus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper T squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {T}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which induces a Poincaré self-duality for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper T squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {T}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, can be ‘quantized’ to give a spectral triple and a K-homology class in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper K normal upper K Subscript 0 Baseline left-parenthesis upper A Subscript theta Baseline circled-times upper A Subscript theta Baseline comma double-struck upper C right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">K</mml:mi>\n <mml:mi mathvariant=\"normal\">K</mml:mi>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {KK}_0(A_\\theta \\otimes A_\\theta , \\mathbb {C})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> providing the co-unit for a Poincaré self-duality for the irrational rotation algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript theta\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_\\theta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"theta element-of double-struck upper R minus double-struck upper Q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\theta \\in \\mathbb {R}\\setminus \\mathbb {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Connes’ proof, however, relied on a K-theory computation and does not supply a representative cycle for the unit of this duality. Since such representatives are vital in applications of duality, we supply such a cycle in unbounded form in this article. Our approach is to construct, for any non-zero integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\">\n <mml:semantics>\n <mml:mi>b</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">b</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, a finitely generated projective module <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper L Subscript b\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">L</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {L}_{b}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript theta Baseline circled-times upper A Subscript theta\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">A_\\theta \\otimes A_\\theta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by using a reduction-to-a-transversal argument of Muhly, Renault, and Williams, applied to a pair of Kronecker foliations along lines of slope <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"theta\">\n <mml:semantics>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\theta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"theta plus b\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\theta + b</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, using the fact that these flows are transverse to each other. We then compute Connes’ dual of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket script upper L Subscript b Baseline right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">L</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[\\mathcal {L}_{b}]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and prove that we obtain an invertible <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau Subscript b Baseline element-of normal upper K normal upper K Subscript 0 Baseline left-parenthesis upper A Subscript theta Baseline comma upper A Subscript theta Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">K</mml:mi>\n <mml:mi mathvariant=\"normal\">K</mml:mi>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\tau _{b}\\in \\mathrm {KK}_0(A_\\theta , A_\\theta )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, represented by an equivariant bundle of Dirac-Schrödinger operators. An application of equivariant Bott Periodicity gives a form of higher index theorem describing functoriality of such ‘<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\">\n <mml:semantics>\n <mml:mi>b</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">b</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-twists’ and this allows us to describe the unit of Connes’ duality in terms of a combination of two constructions in KK-theory. This results in an explicit spectral representative of the unit – a kind of ‘quantized Thom class’ for the diagonal embedding of the noncommutative torus.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transversals, duality, and irrational rotation\",\"authors\":\"Anna Duwenig, Heath Emerson\",\"doi\":\"10.1090/btran/54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An early result of Noncommutative Geometry was Connes’ observation in the 1980’s that the Dirac-Dolbeault cycle for the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-torus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper T squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">T</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {T}^2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, which induces a Poincaré self-duality for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper T squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">T</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {T}^2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, can be ‘quantized’ to give a spectral triple and a K-homology class in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper K normal upper K Subscript 0 Baseline left-parenthesis upper A Subscript theta Baseline circled-times upper A Subscript theta Baseline comma double-struck upper C right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">K</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">K</mml:mi>\\n </mml:mrow>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:msub>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {KK}_0(A_\\\\theta \\\\otimes A_\\\\theta , \\\\mathbb {C})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> providing the co-unit for a Poincaré self-duality for the irrational rotation algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript theta\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A_\\\\theta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for any <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"theta element-of double-struck upper R minus double-struck upper Q\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mo class=\\\"MJX-variant\\\">∖<!-- ∖ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\theta \\\\in \\\\mathbb {R}\\\\setminus \\\\mathbb {Q}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Connes’ proof, however, relied on a K-theory computation and does not supply a representative cycle for the unit of this duality. Since such representatives are vital in applications of duality, we supply such a cycle in unbounded form in this article. Our approach is to construct, for any non-zero integer <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"b\\\">\\n <mml:semantics>\\n <mml:mi>b</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">b</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, a finitely generated projective module <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper L Subscript b\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {L}_{b}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript theta Baseline circled-times upper A Subscript theta\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:msub>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A_\\\\theta \\\\otimes A_\\\\theta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> by using a reduction-to-a-transversal argument of Muhly, Renault, and Williams, applied to a pair of Kronecker foliations along lines of slope <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"theta\\\">\\n <mml:semantics>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\theta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"theta plus b\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\theta + b</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, using the fact that these flows are transverse to each other. We then compute Connes’ dual of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket script upper L Subscript b Baseline right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[\\\\mathcal {L}_{b}]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and prove that we obtain an invertible <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau Subscript b Baseline element-of normal upper K normal upper K Subscript 0 Baseline left-parenthesis upper A Subscript theta Baseline comma upper A Subscript theta Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>b</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">K</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">K</mml:mi>\\n </mml:mrow>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau _{b}\\\\in \\\\mathrm {KK}_0(A_\\\\theta , A_\\\\theta )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, represented by an equivariant bundle of Dirac-Schrödinger operators. An application of equivariant Bott Periodicity gives a form of higher index theorem describing functoriality of such ‘<inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"b\\\">\\n <mml:semantics>\\n <mml:mi>b</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">b</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-twists’ and this allows us to describe the unit of Connes’ duality in terms of a combination of two constructions in KK-theory. This results in an explicit spectral representative of the unit – a kind of ‘quantized Thom class’ for the diagonal embedding of the noncommutative torus.</p>\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
非交换几何的一个早期成果是Connes在20世纪80年代的观察,即22 -圆环T 2的Dirac-Dolbeault循环 \mathbb {t}^2,这引出了t2的庞卡罗自对偶 \mathbb {t}^2,可以“量子化”得到K K 0 (a θ⊗a θ, C)中的谱三重和K同调类。 \mathrm {kk}0(a)\theta \otimes a……\theta , \mathbb {c})给出了无理数旋转代数a θ A_的poincar自对偶的协单位\theta 对于任意θ∈R∈Q \theta \in \mathbb {r}\setminus \mathbb {q} . 然而,Connes的证明依赖于k理论计算,并没有为这种对偶的单位提供一个代表性的循环。由于这种表示在对偶的应用中是至关重要的,因此我们在本文中以无界形式提供这种循环。我们的方法是构造一个有限生成的射影模,对于任意非零整数b b \mathcal {l}_{b} / A θ⊗A θ A_\theta \otimes a……\theta 通过使用Muhly, Renault和Williams的一个截线化简论证,将其应用于沿斜率θ线的一对Kronecker叶 \theta θ + b \theta 加上b,利用这些流彼此横向的事实。然后我们计算Connes的对偶[L b] [\mathcal {l}_{b}]并证明我们得到了一个可逆的τ b∈K K 0 (A θ, A θ) \tau _{b}\in \mathrm {kk}0(a)\theta ……\theta ),由Dirac-Schrödinger操作符的等变束表示。等变博特周期性的一个应用给出了描述这种“b - b -扭转”泛函性的一种高指标定理形式,这使得我们可以用kk理论中两个结构的组合来描述科恩斯对偶性的单位。这就产生了该单位的显式谱表示——一种用于非交换环面对角嵌入的“量子化Thom类”。
An early result of Noncommutative Geometry was Connes’ observation in the 1980’s that the Dirac-Dolbeault cycle for the 22-torus T2\mathbb {T}^2, which induces a Poincaré self-duality for T2\mathbb {T}^2, can be ‘quantized’ to give a spectral triple and a K-homology class in KK0(Aθ⊗Aθ,C)\mathrm {KK}_0(A_\theta \otimes A_\theta , \mathbb {C}) providing the co-unit for a Poincaré self-duality for the irrational rotation algebra AθA_\theta for any θ∈R∖Q\theta \in \mathbb {R}\setminus \mathbb {Q}. Connes’ proof, however, relied on a K-theory computation and does not supply a representative cycle for the unit of this duality. Since such representatives are vital in applications of duality, we supply such a cycle in unbounded form in this article. Our approach is to construct, for any non-zero integer bb, a finitely generated projective module Lb\mathcal {L}_{b} over Aθ⊗AθA_\theta \otimes A_\theta by using a reduction-to-a-transversal argument of Muhly, Renault, and Williams, applied to a pair of Kronecker foliations along lines of slope θ\theta and θ+b\theta + b, using the fact that these flows are transverse to each other. We then compute Connes’ dual of [Lb][\mathcal {L}_{b}] and prove that we obtain an invertible τb∈KK0(Aθ,Aθ)\tau _{b}\in \mathrm {KK}_0(A_\theta , A_\theta ), represented by an equivariant bundle of Dirac-Schrödinger operators. An application of equivariant Bott Periodicity gives a form of higher index theorem describing functoriality of such ‘bb-twists’ and this allows us to describe the unit of Connes’ duality in terms of a combination of two constructions in KK-theory. This results in an explicit spectral representative of the unit – a kind of ‘quantized Thom class’ for the diagonal embedding of the noncommutative torus.