使用显著特征识别动作

Liang Wang, Debin Zhao
{"title":"使用显著特征识别动作","authors":"Liang Wang, Debin Zhao","doi":"10.1109/MMSP.2011.6093832","DOIUrl":null,"url":null,"abstract":"Towards a compact video feature representation, we propose a novel feature selection methodology for action recognition based on the saliency maps of videos. Since saliency maps measure the perceptual importance of the pixels and regions in videos, selecting features using saliency maps enables us to find a feature representation that covers the informative parts of a video. Because saliency detection is a bottom-up procedure, some appearance changes or motions that are irrelevant to actions may also be detected as salient regions. To further improve the purity of the feature representation, we prune these irrelevant salient regions using the saliency values distribution and the spatial-temporal distribution of the salient regions. Extensive experiments are conducted to demonstrate that the proposed feature selection method largely improves the performance of bag-of-video-words model on action recognition based on three different attention models including a static attention model, a motion attention model and their combination.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"65 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recognizing actions using salient features\",\"authors\":\"Liang Wang, Debin Zhao\",\"doi\":\"10.1109/MMSP.2011.6093832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Towards a compact video feature representation, we propose a novel feature selection methodology for action recognition based on the saliency maps of videos. Since saliency maps measure the perceptual importance of the pixels and regions in videos, selecting features using saliency maps enables us to find a feature representation that covers the informative parts of a video. Because saliency detection is a bottom-up procedure, some appearance changes or motions that are irrelevant to actions may also be detected as salient regions. To further improve the purity of the feature representation, we prune these irrelevant salient regions using the saliency values distribution and the spatial-temporal distribution of the salient regions. Extensive experiments are conducted to demonstrate that the proposed feature selection method largely improves the performance of bag-of-video-words model on action recognition based on three different attention models including a static attention model, a motion attention model and their combination.\",\"PeriodicalId\":214459,\"journal\":{\"name\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"volume\":\"65 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2011.6093832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了紧凑的视频特征表示,我们提出了一种新的基于视频显著性映射的动作识别特征选择方法。由于显著性图测量视频中像素和区域的感知重要性,使用显著性图选择特征使我们能够找到覆盖视频信息部分的特征表示。由于显著性检测是一个自下而上的过程,一些与动作无关的外观变化或运动也可能被检测为显著区域。为了进一步提高特征表示的纯度,我们利用显著值分布和显著区域的时空分布对这些不相关的显著区域进行了修剪。大量的实验表明,基于静态注意模型、运动注意模型及其组合三种不同的注意模型,所提出的特征选择方法在很大程度上提高了视频词袋模型在动作识别中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognizing actions using salient features
Towards a compact video feature representation, we propose a novel feature selection methodology for action recognition based on the saliency maps of videos. Since saliency maps measure the perceptual importance of the pixels and regions in videos, selecting features using saliency maps enables us to find a feature representation that covers the informative parts of a video. Because saliency detection is a bottom-up procedure, some appearance changes or motions that are irrelevant to actions may also be detected as salient regions. To further improve the purity of the feature representation, we prune these irrelevant salient regions using the saliency values distribution and the spatial-temporal distribution of the salient regions. Extensive experiments are conducted to demonstrate that the proposed feature selection method largely improves the performance of bag-of-video-words model on action recognition based on three different attention models including a static attention model, a motion attention model and their combination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Separation of speech sources using an Acoustic Vector Sensor Strategies for orca call retrieval to support collaborative annotation of a large archive Recognizing actions using salient features Region of interest determination using human computation Image super-resolution via feature-based affine transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1