基于shearlet变换和全约束最小二乘解混的高光谱图像去噪

A. Karami, Rob Heylen, P. Scheunders
{"title":"基于shearlet变换和全约束最小二乘解混的高光谱图像去噪","authors":"A. Karami, Rob Heylen, P. Scheunders","doi":"10.1109/WHISPERS.2016.8071687","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new denoising method based on a 2D non-subsampled shearlet transform (NSST) and fully constrained least squares unmixing (FCLSU). In the proposed method, first low noisy (LN) bands are separated from high noisy (HN) bands using spectral correlation. Second, NSST is applied to each spectral band of the hyperspectral images. Third, LN bands are denoised using a thresholding technique on the shearlet coefficients and HN bands are denoised by applying FCLSU. The proposed method is compared to state of the art denoising methods on synthetic and real hyperspectral datasets. The effect of denoising on classification accuracy is also investigated. Obtained results show the superiority of the proposed approach.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Denoising of hyperspectral images using shearlet transform and fully constrained least squares unmixing\",\"authors\":\"A. Karami, Rob Heylen, P. Scheunders\",\"doi\":\"10.1109/WHISPERS.2016.8071687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new denoising method based on a 2D non-subsampled shearlet transform (NSST) and fully constrained least squares unmixing (FCLSU). In the proposed method, first low noisy (LN) bands are separated from high noisy (HN) bands using spectral correlation. Second, NSST is applied to each spectral band of the hyperspectral images. Third, LN bands are denoised using a thresholding technique on the shearlet coefficients and HN bands are denoised by applying FCLSU. The proposed method is compared to state of the art denoising methods on synthetic and real hyperspectral datasets. The effect of denoising on classification accuracy is also investigated. Obtained results show the superiority of the proposed approach.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于二维非下采样shearlet变换(NSST)和全约束最小二乘解混(FCLSU)的噪声去噪方法。该方法首先利用频谱相关性将低噪声(LN)波段与高噪声(HN)波段分离。其次,将NSST应用于高光谱图像的各个光谱波段。第三,利用剪切系数的阈值技术对LN波段进行去噪,利用FCLSU对HN波段进行去噪。并将该方法与现有的合成高光谱数据集和真实高光谱数据集的去噪方法进行了比较。研究了去噪对分类精度的影响。仿真结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoising of hyperspectral images using shearlet transform and fully constrained least squares unmixing
In this paper, we propose a new denoising method based on a 2D non-subsampled shearlet transform (NSST) and fully constrained least squares unmixing (FCLSU). In the proposed method, first low noisy (LN) bands are separated from high noisy (HN) bands using spectral correlation. Second, NSST is applied to each spectral band of the hyperspectral images. Third, LN bands are denoised using a thresholding technique on the shearlet coefficients and HN bands are denoised by applying FCLSU. The proposed method is compared to state of the art denoising methods on synthetic and real hyperspectral datasets. The effect of denoising on classification accuracy is also investigated. Obtained results show the superiority of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1