再吸附作用下窄结构真空装置本征放气速率的研究

Z. Mei, H. Bi, Qing Cao, Yuqing Wang, Wenyu Lin, Junfeng Ye, Xudi Wang
{"title":"再吸附作用下窄结构真空装置本征放气速率的研究","authors":"Z. Mei, H. Bi, Qing Cao, Yuqing Wang, Wenyu Lin, Junfeng Ye, Xudi Wang","doi":"10.1116/6.0002906","DOIUrl":null,"url":null,"abstract":"The narrow structure within the vacuum system usually results in a slow evacuation process. Additionally, the high outgassing rate caused by the large surface-to-volume ratio can prevent the vacuum level from meeting the performance requirements of the device. In this paper, the evacuation of the stainless steel parallel plates is established based on a two-dimensional equation combined with the outgassing theory of the recombination–dissociation-limited model. The relationship between the measured and intrinsic outgassing rates was investigated by varying the gap size, pump-out port size, and temperature. The results show that the internal pressure is nonuniformly distributed during the pump-down process, even reaching a quasiequilibrium state. This indicates that the widely used throughput method can make a difference in measuring outgassing rates. This provides a theoretical basis for testing intrinsic outgassing rates, calculating pressure distribution, and configuring pumps or getters in complex vacuum systems.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the intrinsic outgassing rates for narrow structured vacuum devices under readsorption effect\",\"authors\":\"Z. Mei, H. Bi, Qing Cao, Yuqing Wang, Wenyu Lin, Junfeng Ye, Xudi Wang\",\"doi\":\"10.1116/6.0002906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The narrow structure within the vacuum system usually results in a slow evacuation process. Additionally, the high outgassing rate caused by the large surface-to-volume ratio can prevent the vacuum level from meeting the performance requirements of the device. In this paper, the evacuation of the stainless steel parallel plates is established based on a two-dimensional equation combined with the outgassing theory of the recombination–dissociation-limited model. The relationship between the measured and intrinsic outgassing rates was investigated by varying the gap size, pump-out port size, and temperature. The results show that the internal pressure is nonuniformly distributed during the pump-down process, even reaching a quasiequilibrium state. This indicates that the widely used throughput method can make a difference in measuring outgassing rates. This provides a theoretical basis for testing intrinsic outgassing rates, calculating pressure distribution, and configuring pumps or getters in complex vacuum systems.\",\"PeriodicalId\":282302,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology B\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0002906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

真空系统内部结构狭窄,通常导致抽真空过程缓慢。此外,由于表面体积比大而导致的高放气率会使真空度无法满足设备的性能要求。本文结合重组-解离-限制模型的放气理论,建立了不锈钢平行板的放气二维方程。通过改变间隙尺寸、泵出端口尺寸和温度,研究了测量和本征放气速率之间的关系。结果表明:泵降过程中,内压分布不均匀,甚至达到了准平衡状态;这表明广泛使用的通量法可以在测量放气速率方面有所不同。这为测试内在放气速率、计算压力分布以及在复杂真空系统中配置泵或吸氧器提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the intrinsic outgassing rates for narrow structured vacuum devices under readsorption effect
The narrow structure within the vacuum system usually results in a slow evacuation process. Additionally, the high outgassing rate caused by the large surface-to-volume ratio can prevent the vacuum level from meeting the performance requirements of the device. In this paper, the evacuation of the stainless steel parallel plates is established based on a two-dimensional equation combined with the outgassing theory of the recombination–dissociation-limited model. The relationship between the measured and intrinsic outgassing rates was investigated by varying the gap size, pump-out port size, and temperature. The results show that the internal pressure is nonuniformly distributed during the pump-down process, even reaching a quasiequilibrium state. This indicates that the widely used throughput method can make a difference in measuring outgassing rates. This provides a theoretical basis for testing intrinsic outgassing rates, calculating pressure distribution, and configuring pumps or getters in complex vacuum systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Carbon nanotube collimator as an vacuum ultraviolet window Comparative study on variable axis lens systems based on tapered deflectors Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications Upgrading of the modified Knudsen equation and its verification for calculating the gas flow rate through cylindrical tubes Comparison of GeSn alloy films prepared by ion implantation and remote plasma-enhanced chemical vapor deposition methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1