基于机器学习的飞机视觉对接制导的选择性强度范围阈值细化和解释

Debabrata Pal, Anvita Singh, Abhishek Alladi
{"title":"基于机器学习的飞机视觉对接制导的选择性强度范围阈值细化和解释","authors":"Debabrata Pal, Anvita Singh, Abhishek Alladi","doi":"10.1109/CONECCT55679.2022.9865711","DOIUrl":null,"url":null,"abstract":"We propose an automated Visual Docking Guidance System (VDGS) message interpretation service towards a smart and safe aviation endeavor. Owing to the priority of aviation safety criticality and the simultaneous need for smart airport, ground marshallers are getting replaced by VDGS to automatically detect obstacles, probable wingtip collisions and provide suitable assisted parking guidance to pilots. Nevertheless, the discrete presence of light-emitting diodes (LED) in VDGS dot-matrix display coupled with adversarial climatic conditions and far, low-light visibility creates the barrier in automated message detection and interpretation services. In this paper, we propose a novel Selective Intensity Range Thresholding (SIRT) for learning degraded LED pixel intensities and generate a refined synthetic display image. Furthermore, we propose an end-to-end pipeline for automatic recognition of VDGS alphanumeric texts and interpretation of symbologies to infer docking messages. The proposed solution aims to provide automated notification to the pilots about interpreted situational awareness messages from VDGS and record VDGS LED malfunction for rectification.","PeriodicalId":380005,"journal":{"name":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SIRT: Machine-Learning-based Selective Intensity Range Thresholding for Aircraft Visual Docking Guidance Refinement and Interpretation\",\"authors\":\"Debabrata Pal, Anvita Singh, Abhishek Alladi\",\"doi\":\"10.1109/CONECCT55679.2022.9865711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an automated Visual Docking Guidance System (VDGS) message interpretation service towards a smart and safe aviation endeavor. Owing to the priority of aviation safety criticality and the simultaneous need for smart airport, ground marshallers are getting replaced by VDGS to automatically detect obstacles, probable wingtip collisions and provide suitable assisted parking guidance to pilots. Nevertheless, the discrete presence of light-emitting diodes (LED) in VDGS dot-matrix display coupled with adversarial climatic conditions and far, low-light visibility creates the barrier in automated message detection and interpretation services. In this paper, we propose a novel Selective Intensity Range Thresholding (SIRT) for learning degraded LED pixel intensities and generate a refined synthetic display image. Furthermore, we propose an end-to-end pipeline for automatic recognition of VDGS alphanumeric texts and interpretation of symbologies to infer docking messages. The proposed solution aims to provide automated notification to the pilots about interpreted situational awareness messages from VDGS and record VDGS LED malfunction for rectification.\",\"PeriodicalId\":380005,\"journal\":{\"name\":\"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONECCT55679.2022.9865711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT55679.2022.9865711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种自动视觉对接制导系统(VDGS)信息解释服务,以实现智能和安全的航空努力。由于航空安全的重要性和智能机场的同步需求,地面编组员正在被VDGS取代,以自动检测障碍物,可能的翼尖碰撞,并为飞行员提供适当的辅助停车指导。然而,VDGS点阵显示器中发光二极管(LED)的离散存在,加上不利的气候条件和遥远的低光能见度,在自动信息检测和解释服务中造成了障碍。在本文中,我们提出了一种新的选择性强度范围阈值(SIRT)来学习退化的LED像素强度并生成精细的合成显示图像。此外,我们提出了一个端到端管道,用于自动识别VDGS字母数字文本和解释符号以推断对接消息。提出的解决方案旨在向飞行员提供有关VDGS解释的态势感知信息的自动通知,并记录VDGS LED故障以进行纠正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIRT: Machine-Learning-based Selective Intensity Range Thresholding for Aircraft Visual Docking Guidance Refinement and Interpretation
We propose an automated Visual Docking Guidance System (VDGS) message interpretation service towards a smart and safe aviation endeavor. Owing to the priority of aviation safety criticality and the simultaneous need for smart airport, ground marshallers are getting replaced by VDGS to automatically detect obstacles, probable wingtip collisions and provide suitable assisted parking guidance to pilots. Nevertheless, the discrete presence of light-emitting diodes (LED) in VDGS dot-matrix display coupled with adversarial climatic conditions and far, low-light visibility creates the barrier in automated message detection and interpretation services. In this paper, we propose a novel Selective Intensity Range Thresholding (SIRT) for learning degraded LED pixel intensities and generate a refined synthetic display image. Furthermore, we propose an end-to-end pipeline for automatic recognition of VDGS alphanumeric texts and interpretation of symbologies to infer docking messages. The proposed solution aims to provide automated notification to the pilots about interpreted situational awareness messages from VDGS and record VDGS LED malfunction for rectification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Signal Integrity Issues in FPGA based multi-motor microstepping Drives Organ Bank Based on Blockchain A Novel Deep Architecture for Multi-Task Crowd Analysis Convolutional Neural Network-based ECG Classification on PYNQ-Z2 Framework Improved Electric Vehicle Digital Twin Performance Incorporating Detailed Lithium-ion Battery Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1