{"title":"基于三阶依赖组合多个分类器","authors":"H. Kang","doi":"10.1109/ICDAR.2003.1227621","DOIUrl":null,"url":null,"abstract":"Without an independence assumption, combining multiple classifiers deals with a high order probability distribution composed of classifiers and a class label. Storing and estimating the high order probability distribution is exponentially complex and unmanageable in theoretical analysis, so we rely on an approximation scheme using the dependency. In this paper, as an extension of the second-order dependency approach, the probability distribution is optimally approximated by the third-order dependency and multiple classifiers are combined. The proposed method is evaluated on the recognition of unconstrained handwritten numerals from Concordia University and the University of California, Irvine. Experimental results support the proposed method as a promising approach.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Combining multiple classifiers based on third-order dependency\",\"authors\":\"H. Kang\",\"doi\":\"10.1109/ICDAR.2003.1227621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Without an independence assumption, combining multiple classifiers deals with a high order probability distribution composed of classifiers and a class label. Storing and estimating the high order probability distribution is exponentially complex and unmanageable in theoretical analysis, so we rely on an approximation scheme using the dependency. In this paper, as an extension of the second-order dependency approach, the probability distribution is optimally approximated by the third-order dependency and multiple classifiers are combined. The proposed method is evaluated on the recognition of unconstrained handwritten numerals from Concordia University and the University of California, Irvine. Experimental results support the proposed method as a promising approach.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在没有独立性假设的情况下,多分类器组合处理的是由分类器和类标号组成的高阶概率分布。存储和估计高阶概率分布是指数级复杂的,在理论分析中难以管理,因此我们依赖于利用依赖关系的近似方案。本文作为二阶相关方法的扩展,采用三阶相关方法对概率分布进行最优逼近,并将多个分类器组合在一起。通过对来自Concordia大学和加州大学欧文分校的无约束手写数字的识别,对所提出的方法进行了评估。实验结果支持了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining multiple classifiers based on third-order dependency
Without an independence assumption, combining multiple classifiers deals with a high order probability distribution composed of classifiers and a class label. Storing and estimating the high order probability distribution is exponentially complex and unmanageable in theoretical analysis, so we rely on an approximation scheme using the dependency. In this paper, as an extension of the second-order dependency approach, the probability distribution is optimally approximated by the third-order dependency and multiple classifiers are combined. The proposed method is evaluated on the recognition of unconstrained handwritten numerals from Concordia University and the University of California, Irvine. Experimental results support the proposed method as a promising approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1