良好的延续数字图像水平线

F. Cao
{"title":"良好的延续数字图像水平线","authors":"F. Cao","doi":"10.1109/ICCV.2003.1238380","DOIUrl":null,"url":null,"abstract":"We propose a probabilistic algorithm able to detect the curves that are unexpectedly smooth in a set of digital curves. The only parameter is a false alarm rate, influencing the detection only by its logarithm. We experiment the good continuation criterion on image level lines. One of the conclusion is that, accordingly to Gestalt theory, one can detect edges in a way that is widely independent of contrast. We also use the same kind of method to detect corners and junctions.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Good continuations in digital image level lines\",\"authors\":\"F. Cao\",\"doi\":\"10.1109/ICCV.2003.1238380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a probabilistic algorithm able to detect the curves that are unexpectedly smooth in a set of digital curves. The only parameter is a false alarm rate, influencing the detection only by its logarithm. We experiment the good continuation criterion on image level lines. One of the conclusion is that, accordingly to Gestalt theory, one can detect edges in a way that is widely independent of contrast. We also use the same kind of method to detect corners and junctions.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们提出了一种概率算法,能够检测出一组数字曲线中意外光滑的曲线。唯一的参数是虚警率,仅通过其对数影响检测。我们在图像等高线上实验了良好的延拓准则。其中一个结论是,根据格式塔理论,人们可以以一种广泛独立于对比的方式检测边缘。我们也使用同样的方法来检测角落和连接点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Good continuations in digital image level lines
We propose a probabilistic algorithm able to detect the curves that are unexpectedly smooth in a set of digital curves. The only parameter is a false alarm rate, influencing the detection only by its logarithm. We experiment the good continuation criterion on image level lines. One of the conclusion is that, accordingly to Gestalt theory, one can detect edges in a way that is widely independent of contrast. We also use the same kind of method to detect corners and junctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1