基于机器学习的智能配电网故障线路识别

H. Livani, C. Evrenosoglu, V. Centeno
{"title":"基于机器学习的智能配电网故障线路识别","authors":"H. Livani, C. Evrenosoglu, V. Centeno","doi":"10.1109/NAPS.2013.6666829","DOIUrl":null,"url":null,"abstract":"This paper presents a machine learning-based faulty-line identification method in smart distribution networks. The proposed method utilizes postfault root-mean-square (rms) values of voltages measured at the main substation and at selected nodes as well as fault information obtained by fault current identifiers (FCIs) and intelligent electronic re-closers (IE-CRs). The information from FCIs and IE-RCs are first used to identify the faulty region in the network. The normalized rms values of voltages are then utilized as the input to the support vector machine (SVM) classifiers to identify the faulty-line according to the pre-determined fault type. The IEEE 123-node distribution test system is simulated in ATP software. MATLAB is used to process the simulated transients and to apply the proposed method. The performance of the method is tested for different fault inception angles (FIA) and different fault resistances with satisfactory results.","PeriodicalId":421943,"journal":{"name":"2013 North American Power Symposium (NAPS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A machine learning-based faulty line identification for smart distribution network\",\"authors\":\"H. Livani, C. Evrenosoglu, V. Centeno\",\"doi\":\"10.1109/NAPS.2013.6666829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a machine learning-based faulty-line identification method in smart distribution networks. The proposed method utilizes postfault root-mean-square (rms) values of voltages measured at the main substation and at selected nodes as well as fault information obtained by fault current identifiers (FCIs) and intelligent electronic re-closers (IE-CRs). The information from FCIs and IE-RCs are first used to identify the faulty region in the network. The normalized rms values of voltages are then utilized as the input to the support vector machine (SVM) classifiers to identify the faulty-line according to the pre-determined fault type. The IEEE 123-node distribution test system is simulated in ATP software. MATLAB is used to process the simulated transients and to apply the proposed method. The performance of the method is tested for different fault inception angles (FIA) and different fault resistances with satisfactory results.\",\"PeriodicalId\":421943,\"journal\":{\"name\":\"2013 North American Power Symposium (NAPS)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2013.6666829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2013.6666829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于机器学习的智能配电网故障线识别方法。该方法利用主变电站和选定节点测得的故障后电压均方根值以及故障电流识别器(fci)和智能电子重开器(ie - cr)获得的故障信息。首先使用fci和ie - rc的信息来识别网络中的故障区域。然后将归一化后的电压均方根值作为支持向量机(SVM)分类器的输入,根据预先确定的故障类型识别故障线。在ATP软件中对IEEE 123节点配电测试系统进行了仿真。利用MATLAB对模拟的瞬态进行处理,并应用所提出的方法。在不同的故障起始角(FIA)和不同的故障电阻下测试了该方法的性能,取得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A machine learning-based faulty line identification for smart distribution network
This paper presents a machine learning-based faulty-line identification method in smart distribution networks. The proposed method utilizes postfault root-mean-square (rms) values of voltages measured at the main substation and at selected nodes as well as fault information obtained by fault current identifiers (FCIs) and intelligent electronic re-closers (IE-CRs). The information from FCIs and IE-RCs are first used to identify the faulty region in the network. The normalized rms values of voltages are then utilized as the input to the support vector machine (SVM) classifiers to identify the faulty-line according to the pre-determined fault type. The IEEE 123-node distribution test system is simulated in ATP software. MATLAB is used to process the simulated transients and to apply the proposed method. The performance of the method is tested for different fault inception angles (FIA) and different fault resistances with satisfactory results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online estimation of power system distribution factors — A sparse representation approach Visualization of interarea oscillations using an extended subspace identification technique Wind power impact on power system frequency response Cost/benefit analysis for circuit breaker maintenance planning and scheduling Probabilistic modeling and reliability analysis for validating geomagnetically induced current data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1