利用绝热超导器件的极节能二元神经网络的性能评估

O. Chen, Z. Li, Tomoharu Yamauchi, Yanzhi Wang, N. Yoshikawa
{"title":"利用绝热超导器件的极节能二元神经网络的性能评估","authors":"O. Chen, Z. Li, Tomoharu Yamauchi, Yanzhi Wang, N. Yoshikawa","doi":"10.1109/AICAS57966.2023.10168607","DOIUrl":null,"url":null,"abstract":"Binary Neural Networks (BNNs) are gaining popularity for solving real-world problems using Deep Neural Networks (DNNs), such as image recognition and natural language processing. BNNs use binary precision for weights and activations, reducing memory usage by 32 times compared to conventional networks using 32-bit floating-point precision. Among various types of BNNs, AQFP-based BNNs utilizing superconducting logic families are promising for energy-efficient computing, using magnetic flux quantization and quantum interference in Josephson-junction-based superconductor loops. This paper presents a performance assessment of a novel AQFP-based BNN architecture, highlighting scalability issues caused by increased inductance in the analog accumulation circuit. We also discuss potential optimization approaches to address these issues and improve scalability.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices\",\"authors\":\"O. Chen, Z. Li, Tomoharu Yamauchi, Yanzhi Wang, N. Yoshikawa\",\"doi\":\"10.1109/AICAS57966.2023.10168607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binary Neural Networks (BNNs) are gaining popularity for solving real-world problems using Deep Neural Networks (DNNs), such as image recognition and natural language processing. BNNs use binary precision for weights and activations, reducing memory usage by 32 times compared to conventional networks using 32-bit floating-point precision. Among various types of BNNs, AQFP-based BNNs utilizing superconducting logic families are promising for energy-efficient computing, using magnetic flux quantization and quantum interference in Josephson-junction-based superconductor loops. This paper presents a performance assessment of a novel AQFP-based BNN architecture, highlighting scalability issues caused by increased inductance in the analog accumulation circuit. We also discuss potential optimization approaches to address these issues and improve scalability.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二进制神经网络(bnn)在使用深度神经网络(dnn)解决现实世界问题方面越来越受欢迎,例如图像识别和自然语言处理。bnn对权重和激活使用二进制精度,与使用32位浮点精度的传统网络相比,减少了32倍的内存使用。在各种类型的bnn中,基于aqfp的bnn利用超导逻辑族,在基于josephson结的超导环路中使用磁通量量子化和量子干涉,有望实现节能计算。本文提出了一种基于aqfp的新型BNN架构的性能评估,突出了模拟积累电路中电感增加引起的可扩展性问题。我们还讨论了解决这些问题和提高可伸缩性的潜在优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
Binary Neural Networks (BNNs) are gaining popularity for solving real-world problems using Deep Neural Networks (DNNs), such as image recognition and natural language processing. BNNs use binary precision for weights and activations, reducing memory usage by 32 times compared to conventional networks using 32-bit floating-point precision. Among various types of BNNs, AQFP-based BNNs utilizing superconducting logic families are promising for energy-efficient computing, using magnetic flux quantization and quantum interference in Josephson-junction-based superconductor loops. This paper presents a performance assessment of a novel AQFP-based BNN architecture, highlighting scalability issues caused by increased inductance in the analog accumulation circuit. We also discuss potential optimization approaches to address these issues and improve scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1