Neel Patwa, Nilesh A. Ahuja, Srinivasa Somayazulu, Omesh Tickoo, S. Varadarajan, S. Koolagudi
{"title":"保持语义的图像压缩","authors":"Neel Patwa, Nilesh A. Ahuja, Srinivasa Somayazulu, Omesh Tickoo, S. Varadarajan, S. Koolagudi","doi":"10.1109/ICIP40778.2020.9191247","DOIUrl":null,"url":null,"abstract":"Video traffic comprises a large majority of the total traffic on the internet today. Uncompressed visual data requires a very large data rate; lossy compression techniques are employed in order to keep the data-rate manageable. Increasingly, a significant amount of visual data being generated is consumed by analytics (such as classification, detection, etc.) residing in the cloud. Image and video compression can produce visual artifacts, especially at lower data-rates, which can result in a significant drop in performance on such analytic tasks. Moreover, standard image and video compression techniques aim to optimize perceptual quality for human consumption by allocating more bits to perceptually significant features of the scene. However, these features may not necessarily be the most suitable ones for semantic tasks. We present here an approach to compress visual data in order to maximize performance on a given analytic task. We train a deep auto-encoder using a multi-task loss to learn the relevant embeddings. An approximate differentiable model of the quantizer is used during training which helps boost the accuracy during inference. We apply our approach on an image classification problem and show that for a given level of compression, it achieves higher classification accuracy than that obtained by performing classification on images compressed using JPEG. Our approach also outperforms the relevant state-of-the-art approach by a significant margin.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Semantic-Preserving Image Compression\",\"authors\":\"Neel Patwa, Nilesh A. Ahuja, Srinivasa Somayazulu, Omesh Tickoo, S. Varadarajan, S. Koolagudi\",\"doi\":\"10.1109/ICIP40778.2020.9191247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video traffic comprises a large majority of the total traffic on the internet today. Uncompressed visual data requires a very large data rate; lossy compression techniques are employed in order to keep the data-rate manageable. Increasingly, a significant amount of visual data being generated is consumed by analytics (such as classification, detection, etc.) residing in the cloud. Image and video compression can produce visual artifacts, especially at lower data-rates, which can result in a significant drop in performance on such analytic tasks. Moreover, standard image and video compression techniques aim to optimize perceptual quality for human consumption by allocating more bits to perceptually significant features of the scene. However, these features may not necessarily be the most suitable ones for semantic tasks. We present here an approach to compress visual data in order to maximize performance on a given analytic task. We train a deep auto-encoder using a multi-task loss to learn the relevant embeddings. An approximate differentiable model of the quantizer is used during training which helps boost the accuracy during inference. We apply our approach on an image classification problem and show that for a given level of compression, it achieves higher classification accuracy than that obtained by performing classification on images compressed using JPEG. Our approach also outperforms the relevant state-of-the-art approach by a significant margin.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video traffic comprises a large majority of the total traffic on the internet today. Uncompressed visual data requires a very large data rate; lossy compression techniques are employed in order to keep the data-rate manageable. Increasingly, a significant amount of visual data being generated is consumed by analytics (such as classification, detection, etc.) residing in the cloud. Image and video compression can produce visual artifacts, especially at lower data-rates, which can result in a significant drop in performance on such analytic tasks. Moreover, standard image and video compression techniques aim to optimize perceptual quality for human consumption by allocating more bits to perceptually significant features of the scene. However, these features may not necessarily be the most suitable ones for semantic tasks. We present here an approach to compress visual data in order to maximize performance on a given analytic task. We train a deep auto-encoder using a multi-task loss to learn the relevant embeddings. An approximate differentiable model of the quantizer is used during training which helps boost the accuracy during inference. We apply our approach on an image classification problem and show that for a given level of compression, it achieves higher classification accuracy than that obtained by performing classification on images compressed using JPEG. Our approach also outperforms the relevant state-of-the-art approach by a significant margin.