基于投影不变量的无需摄像机标定的障碍物检测与自定位

K. Roh, Wang-Heon Lee, In-So Kweon
{"title":"基于投影不变量的无需摄像机标定的障碍物检测与自定位","authors":"K. Roh, Wang-Heon Lee, In-So Kweon","doi":"10.1109/IROS.1997.655137","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two new vision-based methods for indoor mobile robot navigation. One is a self-localization algorithm using projective invariant and the other is a method for obstacle detection by simple image difference and relative positioning. For a geometric model of corridor environment, we use natural features formed by floor, walls, and door frames. Using the cross-ratios of the features can be effective and robust in building and updating model-base, and image matching. We predefine a risk zone without obstacles for a robot, and store the image of the risk zone, which will be used to detect obstacles inside the zone by comparing the stored image with the current image of a new risk zone. The position of the robot and obstacles are determined by relative positioning. The robustness and feasibility of our algorithms have been demonstrated through experiments in corridor environments using the KASIRI-II indoor mobile robot.","PeriodicalId":408848,"journal":{"name":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Obstacle detection and self-localization without camera calibration using projective invariants\",\"authors\":\"K. Roh, Wang-Heon Lee, In-So Kweon\",\"doi\":\"10.1109/IROS.1997.655137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose two new vision-based methods for indoor mobile robot navigation. One is a self-localization algorithm using projective invariant and the other is a method for obstacle detection by simple image difference and relative positioning. For a geometric model of corridor environment, we use natural features formed by floor, walls, and door frames. Using the cross-ratios of the features can be effective and robust in building and updating model-base, and image matching. We predefine a risk zone without obstacles for a robot, and store the image of the risk zone, which will be used to detect obstacles inside the zone by comparing the stored image with the current image of a new risk zone. The position of the robot and obstacles are determined by relative positioning. The robustness and feasibility of our algorithms have been demonstrated through experiments in corridor environments using the KASIRI-II indoor mobile robot.\",\"PeriodicalId\":408848,\"journal\":{\"name\":\"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1997.655137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1997.655137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了两种新的基于视觉的室内移动机器人导航方法。一种是基于投影不变量的自定位算法,另一种是基于简单图像差分和相对定位的障碍物检测方法。对于走廊环境的几何模型,我们使用了由地板、墙壁和门框形成的自然特征。利用特征的交叉比对可以有效地建立和更新模型库,以及进行图像匹配。我们为机器人预先定义一个没有障碍物的危险区域,并存储该危险区域的图像,将存储的图像与新危险区域的当前图像进行比较,用于检测该区域内的障碍物。机器人和障碍物的位置通过相对定位来确定。通过室内移动机器人KASIRI-II在走廊环境中的实验,验证了算法的鲁棒性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Obstacle detection and self-localization without camera calibration using projective invariants
In this paper, we propose two new vision-based methods for indoor mobile robot navigation. One is a self-localization algorithm using projective invariant and the other is a method for obstacle detection by simple image difference and relative positioning. For a geometric model of corridor environment, we use natural features formed by floor, walls, and door frames. Using the cross-ratios of the features can be effective and robust in building and updating model-base, and image matching. We predefine a risk zone without obstacles for a robot, and store the image of the risk zone, which will be used to detect obstacles inside the zone by comparing the stored image with the current image of a new risk zone. The position of the robot and obstacles are determined by relative positioning. The robustness and feasibility of our algorithms have been demonstrated through experiments in corridor environments using the KASIRI-II indoor mobile robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of actively adjustable frequency modulators via redundant actuation: the case for a five-bar finger mechanism Performance of emotional group robotic system using mass psychology Initial results from vision-based control of the Ames Marsokhod rover Information sharing among multiple robots for cooperation in cellular robotic system A wheeled multijoint robot for autonomous sewer inspection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1